Fine and parabolic limits for solutions of second-order linear parabolic equations on an infinite slab

Author:

Mair B. A.

Abstract

This paper investigates the boundary behaviour of positive solutions of the equation L u = 0 Lu = 0 , where L L is a uniformly parabolic second-order differential operator in divergence form having Hölder-continuous coefficients on X = R n × ( 0 , T ) X = {{\mathbf {R}}^n} \times (0,T) , where 0 > T > 0 > T > \infty . In particular, the notion of semithinness for the potential theory on X X associated with L L is introduced, and the relationships between fine, semifine and parabolic convergence at points of R n × { 0 } {{\mathbf {R}}^n} \times \{ 0 \} are studied. The abstract Fatou-Naim-Doob theorem is used to deduce that every positive solution of L u = 0 Lu = 0 on X X has parabolic limits Lebesgue-almost-everywhere on R n × { 0 } {{\mathbf {R}}^n} \times \{ 0 \} . Furthermore, a Carleson-type result is obtained for solutions defined on a union of parabolic regions.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference26 articles.

1. Bounds for the fundamental solution of a parabolic equation;Aronson, D. G.;Bull. Amer. Math. Soc.,1967

2. Non-negative solutions of linear parabolic equations;Aronson, D. G.;Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3),1968

3. Lecture Notes in Mathematics, No. 22;Bauer, Heinz,1966

4. N. Bourbaki, General topology, Part 2, Addison-Wesley, Reading, Mass., 1966.

5. Lecture Notes in Mathematics, Vol. 175;Brelot, Marcel,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3