On certain elementary extensions of models of set theory

Author:

Enayat Ali

Abstract

In § 1 \S 1 we study two canonical methods of producing models of ZFC \operatorname {ZFC} with no elementary end extensions. § 2 \S 2 is devoted to certain "completeness" theorems dealing with elementary extensions, e.g., using ω 1 {\diamondsuit _{{\omega _1}}} we show that for a consistent T ZFC T \supseteq \operatorname {ZFC} the property "Every model A \mathfrak {A} of T T has an elementary extension fixing ω A {\omega ^\mathfrak {A}} " is equivalent to T T\vdash "There exists an uncountable measurable cardinal". We also give characterizations of T T\vdash " κ \kappa is weakly compact" and T T\vdash " κ \kappa is measurable" in terms of elementary extensions.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference16 articles.

1. On certain elementary extensions of models of set theory;Enayat, Ali;Trans. Amer. Math. Soc.,1984

2. Elementary extensions of countable models of set theory;Hutchinson, John E.;J. Symbolic Logic,1976

3. Model theory via set theory;Hutchinson, John E.;Israel J. Math.,1976

4. Pure and Applied Mathematics;Jech, Thomas,1978

5. Blunt and topless end extensions of models of set theory;Kaufmann, Matt;J. Symbolic Logic,1983

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Condensable models of set theory;Archive for Mathematical Logic;2021-08-06

2. ZFC PROVES THAT THE CLASS OF ORDINALS IS NOT WEAKLY COMPACT FOR DEFINABLE CLASSES;The Journal of Symbolic Logic;2018-03

3. Incomparable ω 1 ‐like models of set theory;Mathematical Logic Quarterly;2017-03-31

4. Iterated elementary embeddings and the model theory of infinitary logic;Annals of Pure and Applied Logic;2016-03

5. ALMOST GALOIS ω-STABLE CLASSES;The Journal of Symbolic Logic;2015-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3