The sharp Sobolev inequality and the Banchoff-Pohl inequality on surfaces

Author:

Howard Ralph

Abstract

Let ( M , g ) (M,g) be a complete two dimensional simply connected Riemannian manifold with Gaussian curvature K 1 K\le -1 . If f f is a compactly supported function of bounded variation on M M , then f f satisfies the Sobolev inequality \[ 4 π M f 2 d A + ( M | f | d A ) 2 ( M f d A ) 2 . 4\pi \int _M f^2\,dA+ \left (\int _M |f|\,dA \right )^2\le \left (\int _M\|\nabla f\|\,dA \right )^2. \] Conversely, letting f f be the characteristic function of a domain D M D\subset M recovers the sharp form 4 π A ( D ) + A ( D ) 2 L ( D ) 2 4\pi A(D)+A(D)^2\le L(\partial D)^2 of the isoperimetric inequality for simply connected surfaces with K 1 K\le -1 . Therefore this is the Sobolev inequality “equivalent” to the isoperimetric inequality for this class of surfaces. This is a special case of a result that gives the equivalence of more general isoperimetric inequalities and Sobolev inequalities on surfaces. Under the same assumptions on ( M , g ) (M,g) , if c : [ a , b ] M c\colon [a,b]\to M is a closed curve and w c ( x ) w_c(x) is the winding number of c c about x x , then the Sobolev inequality implies \[ 4 π M w c 2 d A + ( M | w c | d A ) 2 L ( c ) 2 , 4\pi \int _M w_c^2\,dA+ \left (\int _M|w_c|\,dA \right )^2\le L(c)^2, \] which is an extension of the Banchoff-Pohl inequality to simply connected surfaces with curvature 1 \le -1 .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference16 articles.

1. A generalization of the isoperimetric inequality;Banchoff, Thomas F.;J. Differential Geometry,1971

2. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];Burago, Yu. D.,1988

3. Pure and Applied Mathematics;Chavel, Isaac,1984

4. A generalization of the isoperimetric inequality on 𝑆² and flat tori in 𝑆³;Enomoto, Kazuyuki;Proc. Amer. Math. Soc.,1994

5. Normal and integral currents;Federer, Herbert;Ann. of Math. (2),1960

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Note on Sharp Affine Poincaré-Sobolev Inequalities and Exact in Minimization of Zhang’s Energy on Bounded Variation and Exactness;Journal of Applied Mathematics and Physics;2023

2. Symmetry and isoperimetry for Riemannian surfaces;Calculus of Variations and Partial Differential Equations;2021-11-20

3. On the Mixed Pólya-Szegö Principle;Acta Mathematica Sinica, English Series;2021-03-25

4. A sharp reverse Bonnesen-style inequality and generalization;Journal of Inequalities and Applications;2019-04-01

5. LYZ ellipsoid and Petty projection body for log-concave functions;Advances in Mathematics;2018-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3