Let
Λ
\Lambda
be a connected tame hereditary algebra over an algebraically closed field. We show that if
Λ
=
k
Q
\Lambda =kQ
is of type
A
~
n
\widetilde {\mathbb {A}}_n
,
D
~
n
\widetilde {\mathbb {D}}_n
,
E
~
6
\widetilde {\mathbb {E}}_6
or
E
~
7
\widetilde {\mathbb {E}}_7
, then every Gabriel-Roiter submodule of a quasi-simple module of rank
1
1
(i.e. a simple homogeneous module) has defect
−
1
-1
. In particular, any Gabriel-Roiter submodule of a simple homogeneous module yields a Kronecker pair, and thus induces a full exact embedding of the category
mod
k
A
~
1
\operatorname {mod} k\widetilde {\mathbb {A}}_1
into
mod
Λ
\operatorname {mod}\Lambda
, where
A
~
1
\widetilde {\mathbb {A}}_1
is the Kronecker quiver. Consequently, we obtain that all quasi-simple modules are Gabriel-Roiter factor modules.