Stability of Dirichlet heat kernel estimates for non-local operators under Feynman-Kac perturbation

Author:

Chen Zhen-Qing,Kim Panki,Song Renming

Abstract

In this paper we show that Dirichlet heat kernel estimates for a class of (not necessarily symmetric) Markov processes are stable under non-local Feynman-Kac perturbations. This class of processes includes, among others, (reflected) symmetric stable-like processes in closed d d -sets in R d \mathbb {R}^d , killed symmetric stable processes, censored stable processes in C 1 , 1 C^{1, 1} open sets, as well as stable processes with drifts in bounded C 1 , 1 C^{1, 1} open sets. These two-sided estimates are explicit involving distance functions to the boundary.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference33 articles.

1. Semigroup of Schrödinger operators with potentials given by Radon measures;Blanchard, Ph.,1990

2. Censored stable processes;Bogdan, Krzysztof;Probab. Theory Related Fields,2003

3. Estimates of heat kernel of fractional Laplacian perturbed by gradient operators;Bogdan, Krzysztof;Comm. Math. Phys.,2007

4. Perturbation of symmetric Markov processes;Chen, Z.-Q.;Probab. Theory Related Fields,2008

5. On general perturbations of symmetric Markov processes;Chen, Z.-Q.;J. Math. Pures Appl. (9),2009

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability of estimates for fundamental solutions under Feynman–Kac perturbations for symmetric Markov processes;Journal of the Mathematical Society of Japan;2023-04-21

2. A family of nonlinear Schrodinger equations and their solitons solutions;Chaos, Solitons & Fractals;2023-01

3. Spine decomposition and L log L criterion for superprocesses with non-local branching mechanisms;Latin American Journal of Probability and Mathematical Statistics;2022

4. Spectral cluster estimates for Schrödinger operators of relativistic type;Journal de Mathématiques Pures et Appliquées;2021-11

5. Feynman--Kac Transform for Anomalous Processes;SIAM Journal on Mathematical Analysis;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3