Sierpiński and Carmichael numbers

Author:

Banks William,Finch Carrie,Luca Florian,Pomerance Carl,Stănică Pantelimon

Abstract

We establish several related results on Carmichael, Sierpiński and Riesel numbers. First, we prove that almost all odd natural numbers k k have the property that 2 n k + 1 2^nk+1 is not a Carmichael number for any n N n\in \mathbb {N} ; this implies the existence of a set K \mathscr {K} of positive lower density such that for any k K k\in \mathscr {K} the number 2 n k + 1 2^nk+1 is neither prime nor Carmichael for every n N n\in \mathbb {N} . Next, using a recent result of Matomäki and Wright, we show that there are x 1 / 5 \gg x^{1/5} Carmichael numbers up to x x that are also Sierpiński and Riesel. Finally, we show that if 2 n k + 1 2^nk+1 is Lehmer, then n 150 ω ( k ) 2 log k n\leqslant 150\,\omega (k)^2\log k , where ω ( k ) \omega (k) is the number of distinct primes dividing k k .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference29 articles.

1. There are infinitely many Carmichael numbers;Alford, W. R.;Ann. of Math. (2),1994

2. Carmichael numbers with a square totient;Banks, W. D.;Canad. Math. Bull.,2009

3. Carmichael numbers with a totient of the form 𝑎²+𝑛𝑏²;Banks, William D.;Monatsh. Math.,2012

4. A remark on Giuga’s conjecture and Lehmer’s totient problem;Banks, William D.;Albanian J. Math.,2009

5. On Carmichael numbers in arithmetic progressions;Banks, William D.;J. Aust. Math. Soc.,2010

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ramanujan’s taxicab number and its ilk;The Ramanujan Journal;2024-04-20

2. There are no Carmichael numbers of the form 2 n p+1 with p prime;Comptes Rendus. Mathématique;2022-10-04

3. Iterated Riesel and Iterated Sierpiński Numbers;Combinatorial and Additive Number Theory III;2019-12-11

4. Primes of the form $${kM^n+n}$$ k M n + n;Acta Mathematica Hungarica;2019-01-24

5. Carmichael numbers and the sieve;Journal of Number Theory;2016-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3