Non-self-adjoint graphs

Author:

Hussein Amru,Krejčiřík David,Siegl Petr

Abstract

On finite metric graphs we consider Laplace operators, subject to various classes of non-self-adjoint boundary conditions imposed at graph vertices. We investigate spectral properties, existence of a Riesz basis of projectors and similarity transforms to self-adjoint Laplacians. Among other things, we describe a simple way to relate the similarity transforms between Laplacians on certain graphs with elementary similarity transforms between matrices defining the boundary conditions.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference45 articles.

1. On series in root vectors of operators defined by forms with a selfadjoint principal part;Agranovich, M. S.;Funktsional. Anal. i Prilozhen.,1994

2. Point interactions: 𝒫𝒯-Hermiticity and reality of the spectrum;Albeverio, Sergio;Lett. Math. Phys.,2002

3. One-dimensional Schrödinger operators with 𝒫-symmetric zero-range potentials;Albeverio, S.;J. Phys. A,2005

4. M. Astudillo. Pseudo-Hermitian Laplace operators on star-graphs: real spectrum and self-adjointness. Master thesis, Lund University, 2008.

5. Making sense of non-Hermitian Hamiltonians;Bender, Carl M.;Rep. Progr. Phys.,2007

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discrete-coordinate crypto-Hermitian quantum system controlled by time-dependent Robin boundary conditions;Physica Scripta;2024-02-26

2. A system of Schrödinger equations in a wave guide;Journal of Mathematical Physics;2023-11-01

3. Spectrum of the wave equation with Dirac damping on a non-compact star graph;Proceedings of the American Mathematical Society;2023-05-12

4. Non-self-adjoint relativistic point interaction in one dimension;Journal of Mathematical Analysis and Applications;2022-12

5. On the eigenvalues of the Robin Laplacian with a complex parameter;Analysis and Mathematical Physics;2022-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3