Non-commutative positive kernels and their matrix evaluations

Author:

Kalyuzhnyĭ-Verbovetzkiĭ Dmitry,Vinnikov Victor

Abstract

We show that a formal power series in 2 N 2N non-commuting indeterminates is a positive non-commutative kernel if and only if the kernel on N N -tuples of matrices of any size obtained from this series by matrix substitution is positive. We present two versions of this result related to different classes of matrix substitutions. In the general case we consider substitutions of jointly nilpotent N N -tuples of matrices, and thus the question of convergence does not arise. In the “convergent” case we consider substitutions of N N -tuples of matrices from a neighborhood of zero where the series converges. Moreover, in the first case the result can be improved: the positivity of a non-commutative kernel is guaranteed by the positivity of its values on the diagonal, i.e., on pairs of coinciding jointly nilpotent N N -tuples of matrices. In particular this yields an analogue of a recent result of Helton on non-commutative sums-of-squares representations for the class of hereditary non-commutative polynomials. We show by an example that the improved formulation does not apply in the “convergent” case.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference10 articles.

1. Operator Theory: Advances and Applications;Alpay, Daniel,1997

2. D. Alpay and D.S. Kalyuzhnyĭ-Verbovetzkiĭ, On the intersection of null spaces for matrix substitutions in a non-commutative rational formal power series, C. R. Math. Acad. Sci. Paris 339 (2004), no. 8, 533–538.

3. Theory of reproducing kernels;Aronszajn, N.;Trans. Amer. Math. Soc.,1950

4. J.A. Ball, G. Groenewald, and T. Malakorn, Conservative structured noncommutative multidimensional linear systems, Multidimens. Syst. Signal Process., to appear.

5. Formal reproducing kernel Hilbert spaces: the commutative and noncommutative settings;Ball, Joseph A.,2003

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Noncommutative reproducing kernel Hilbert spaces;Journal of Functional Analysis;2016-10

2. Tensorial Function Theory: From Berezin Transforms to Taylor’s Taylor Series and Back;Integral Equations and Operator Theory;2013-05-12

3. Multiplication operators on the energy space;Journal of Operator Theory;2013-01-08

4. Non-commutative varieties with curvature having bounded signature;Illinois Journal of Mathematics;2011-01-01

5. Noncommutative ball maps;Journal of Functional Analysis;2009-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3