Permanent groups

Author:

Beasley Leroy B.,Cummings Larry

Abstract

A permanent group is a group of nonsingular matrices on which the permanent function is multiplicative. Let A B A \circ B denote the Hadamard product of matrices A and B. The set of groups G of nonsingular n × n n \times n matrices which contain the diagonal group D \mathcal {D} and such that for every pair A, B of matrices in G we have A B T D A \circ {B^T} \in \mathcal {D} is denoted by A n {\mathcal {A}_n} . If the underlying field has at least three elements then A n {\mathcal {A}_n} consists of permanent groups. A partial converse is available: If a permanent group G is generated by D \mathcal {D} together with a set S of elementary matrices and a set Q of permutation matrices then G = H K G = HK where H is the subgroup generated by Q and K is generated by D \mathcal {D} and S, and K A n K \in {\mathcal {A}_n} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference2 articles.

1. Maximal groups on which the permanent is multiplicative;Beasley, LeRoy B.;Canad. J. Math. 21 (1969), 495-497; corrigendum, ibid.,1969

2. Permanents;Marcus, Marvin;Amer. Math. Monthly,1965

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The structure of generalized permanent semigroups;Linear Algebra and its Applications;1993-04

2. Schur extensions of monomial matrix groups;Linear Algebra and its Applications;1992-01

3. Combinatorial analysis (matrix problems, order theory);Journal of Soviet Mathematics;1983

4. Multiplicative properties of generalized matrix functions;Linear and Multilinear Algebra;1982-01

5. Conditions for equality of decomposable symmetric tensors;Linear Algebra and its Applications;1979-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3