Asymptotic estimates of the 𝑛-widths in Hilbert space

Author:

Jerome Joseph W.

Abstract

Let Ω R m \Omega \subset {R^m} be a bounded open set satisfying the restricted cone property and let R be a nonnegative selfadjoint operator on L 2 ( Ω ) {L^2}(\Omega ) which is the realization of a uniformly elliptic operator A of order v v with suitable coefficients and principal part a ( x , ξ ) a(x,\xi ) . Let R \mathcal {R} be the ellipsoid { f : ( R f , f ) 1 } \{ f:(Rf,f) \leqq 1\} . The L 2 {L^2} n-widths d n ( R ) {d_n}(\mathcal {R}) satisfy d n ( R ) ( c / n ) v / 2 m {d_n}(\mathcal {R}) \sim {(c/n)^{v/2m}} where c = Ω ( 0 > a ( x , ξ ) > 1 d ξ ) d x c = \smallint _\Omega {(\smallint _{0 > a(x,\xi ) > 1} {d\xi )\;dx} } . If B ( u , v ) B(u,v) is a nonnegative Hermitian coercive form over a subspace V \mathcal {V} of the Sobolev space W k , 2 ( Ω ) {W^{k,2}}(\Omega ) , then the n-widths of B = { f V : B ( f , f ) 1 } \mathcal {B} = \{ f \in \mathcal {V}:B(f,f) \leqq 1\} satisfy, 0 > ( c ) k / m lim inf d n ( B ) n k / m lim sup d n ( B ) n k / m ( c ) k / m 0 > {(c’)^{k/m}} \leqq \lim \inf {d_n}(\mathcal {B}){n^{k/m}} \leqq \lim \sup {d_n}(\mathcal {B}){n^{k/m}} \leqq {(c)^{k/m}} . In some cases c = c = c c’ = c = c where c is defined in terms of an elliptic operator of order 2k. The n-widths of B \mathcal {B} in W j , 2 ( Ω ) , 0 j k {W^{j,2}}(\Omega ),0 \leqq j \leqq k , are of order O ( n ( k j ) / m ) , n O({n^{ - (k - j)/m}}),n \to \infty .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference9 articles.

1. Van Nostrand Mathematical Studies, No. 2;Agmon, Shmuel,1965

2. On eigenvalue distributions for elliptic operators without smooth coefficients;Beals, Richard;Bull. Amer. Math. Soc.,1966

3. Classes of compact operators and eigenvalue distributions for elliptic operators;Beals, Richard;Amer. J. Math.,1967

4. On eigenvalue distributions for elliptic operators without smooth coefficients. II;Beals, Richard;Bull. Amer. Math. Soc.,1968

5. Asymptotic behavior of the Green’s function and spectral function of an elliptic operator;Beals, Richard;J. Functional Analysis,1970

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3