Let
(
A
,
G
,
α
)
(A,G,\alpha )
be a
C
∗
{C^{\ast }}
-dynamical system and let
G
G
be a discrete group. When
G
G
is a cental shift in
(
A
,
G
,
α
)
(A,G,\alpha )
, we show that
A
A
is
G
G
-simple (resp.
G
G
-prime) if and only if the
C
∗
{C^{\ast }}
-crossed product
A
×
α
G
A \times {}_\alpha G
is simple (resp. prime).