Let
X
,
X
1
,
X
2
,
.
.
.
X,~X_{1},~X_{2},...
be i.i.d. random variables with
0
>
E
X
2
=
σ
2
>
∞
0>EX^{2}=\sigma ^{2}>\infty
and
E
X
=
0
,
EX=0,
and set
S
n
=
X
1
+
⋯
+
X
n
.
S_{n}=X_{1}+\cdots +X_{n}.
We prove Paley-type inequalities for series involving probabilities of moderate deviations
P
(
|
S
n
|
≥
λ
n
log
n
)
,
P(\left \vert S_{n}\right \vert \geq \lambda \sqrt {n\log n}),
λ
>
0
,
\lambda >0,
and probabilities of small deviations
P
(
|
S
n
|
≥
P(\left \vert S_{n}\right \vert \geq
λ
n
log
log
n
)
\lambda \sqrt {n\log \log n})
,
λ
>
σ
2
.
\lambda >\sigma \sqrt {2}.