Polynomial rings over Goldie-Kerr commutative rings II

Author:

Faith Carl

Abstract

An overlooked corollary to the main result of the stated paper (Proc. Amer. Math. Soc. 120 (1994), 989–993) is that any Goldie ring R R of Goldie dimension 1 has Artinian classical quotient ring Q Q , hence is a Kerr ring in the sense that the polynomial ring R [ X ] R[X] satisfies the a c c acc on annihilators ( = a c c ) (=acc \bot ) . More generally, we show that a Goldie ring R R has Artinian Q Q when every zero divisor of R R has essential annihilator (in this case Q Q is a local ring; see Theorem 1 1^\prime ). A corollary to the proof is Theorem 2: A commutative ring R R has Artinian Q Q iff R R is a Goldie ring in which each element of the Jacobson radical of Q Q has essential annihilator. Applying a theorem of Beck we show that any a c c acc \bot ring R R that has Noetherian local ring R p R_p for each associated prime P P is a Kerr ring and has Kerr polynomial ring R [ X ] R[X] (Theorem 5).

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference13 articles.

1. Σ-injective modules;Beck, István;J. Algebra,1972

2. Coherence for polynomial rings;Camillo, Victor;J. Algebra,1990

3. [C-H] F. Cedó and D. Herbera, On polynomial rings over Kerr commutative rings, preprint, U. Autónoma de Barcelona, 1995.

4. [F-F] A. Facchini and C. Faith, FP-injective quotient rings and elementary divisor rings, Proceedings of the Fez Conference on Commutative Algebra (1995), Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York and Basel, 1996.

5. Addendum to: “Finitely embedded commutative rings” [Proc. Amer. Math. Soc. 112 (1991), no. 3, 657–659; MR1057942 (91j:13012)];Faith, Carl;Proc. Amer. Math. Soc.,1993

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Mori Property in Rings with Zero Divisors, II;Rocky Mountain Journal of Mathematics;2007-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3