Oblique projections in atomic spaces

Author:

Aldroubi Akram

Abstract

Let H \mathcal {H} be a Hilbert space, O \mathbf {O} a unitary operator on H \mathcal {H} , and { ϕ i } i = 1 , , r . \{\phi ^i\}_{i=1,\dots ,r.} r r vectors in H \mathcal {H} . We construct an atomic subspace U H U \subset \mathcal {H} : U = { i = 1 , , r k Z c i ( k ) O k ϕ i : c i l 2 , i = 1 , , r } . \begin{equation*} U=\left \{ { \sum \limits _{i=1,\dots ,r} {\sum \limits _{k\in \mathbf {Z}} {c^i(k)\mathbf {O}^k\phi ^i}:\;c^i\in l^2,\forall i=1,\dots ,r}} \right \}. \end{equation*} We give the necessary and sufficient conditions for U U to be a well-defined, closed subspace of H \mathcal {H} with { O k ϕ i } i = 1 , , r , k Z \left \{ {\mathbf {O}^k\phi ^i} \right \}_{i=1,\dots ,r, \;k\in \mathbf {Z}} as its Riesz basis. We then consider the oblique projection P U V \mathbf {P}_{{\scriptscriptstyle U\bot V}} on the space U ( O , { ϕ U i } i = 1 , , r ) U(\mathbf {O},\{\phi ^i_{\scriptscriptstyle U}\}_{i=1,\dots ,r}) in a direction orthogonal to V ( O , { ϕ V i } i = 1 , , r ) V(\mathbf {O},\{\phi ^i_{\scriptscriptstyle V}\}_{i=1,\dots ,r}) . We give the necessary and sufficient conditions on O , { ϕ U i } i = 1 , , r \mathbf {O},\{\phi ^i_{\scriptscriptstyle U}\}_{i=1,\dots ,r} , and { ϕ V i } i = 1 , , r \{\phi ^i_{\scriptscriptstyle V}\}_{i=1,\dots ,r} for P U V \mathbf {P}_{{\scriptscriptstyle U\bot V}} to be well defined. The results can be used to construct biorthogonal multiwavelets in various spaces. They can also be used to generalize the Shannon-Whittaker theory on uniform sampling.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference20 articles.

1. Families of multiresolution and wavelet spaces with optimal properties;Aldroubi, Akram;Numer. Funct. Anal. Optim.,1993

2. A. Aldroubi and M. Unser, Oblique projections in discrete signal subspaces of 𝑙₂ and the wavelet transform, (Andrew Laine and Michael Unser, eds.), Wavelet applications in signal and image processing, SPIE–The international Society for Optical Engineering, Bellingham, WA, 1994, pp. 36–45.

3. Sampling procedures in function spaces and asymptotic equivalence with Shannon’s sampling theory;Aldroubi, Akram;Numer. Funct. Anal. Optim.,1994

4. J. J. Benedetto and M. W. Frazier, Wavelets–Mathematics and Applications, CRC, Boca Raton, FL, 1993.

5. C. A. Berenstein and E. V. Patrick, Exact deconvolution for multiple convolution operators– an overview, plus performance characterizations for imageing sensors, IEEE, pages 723–734. IEEE, April 1990.

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sampling in Shift-Invariant Subspaces;RSME Springer Series;2024

2. Stable parameterization of continuous and piecewise-linear functions;Applied and Computational Harmonic Analysis;2023-11

3. Multi-Channel Sampling on Graphs and Its Relationship to Graph Filter Banks;IEEE Open Journal of Signal Processing;2023

4. Shortest-support multi-spline bases for generalized sampling;Journal of Computational and Applied Mathematics;2021-10

5. Sampling in the Range of the Analysis Operator of a Continuous Frame Having Unitary Structure;Operator Theory: Advances and Applications;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3