The components of the automorphism group of a Jordan algebra

Author:

Gordon S. Robert

Abstract

Let F \mathfrak {F} be a semisimple Jordan algebra over an algebraically closed field Φ \Phi of characteristic zero. Let G G be the automorphism group of F \mathfrak {F} and Γ \Gamma the structure groups of F \mathfrak {F} . General results on G G and Γ \Gamma are given, the proofs of which do not involve the use of the classification theory of simple Jordan algebras over Φ \Phi . Specifically, the algebraic components of the linear algebraic groups G G and Γ \Gamma are determined, and a formula for the number of components in each case is given. In the course of this investigation, certain Lie algebras and root spaces associated with F \mathfrak {F} are studied. For each component G i {G_i} of G G , the index of G G is defined to be the minimum dimension of the 1 1 -eigenspace of the automorphisms belonging to G i {G_i} . It is shown that the index of G i {G_i} is also the minimum dimension of the fixed-point spaces of automorphisms in G i {G_i} . An element of G G is called regular if the dimension of its 1 1 -eigenspace is equal to the index of the component to which it belongs. It is proven that an automorphism is regular if and only if its 1 1 -eigenspace is an associative subalgebra of F \mathfrak {F} . A formula for the index of each component G i {G_i} is given. In the Appendix, a new proof is given of the fact that the set of primitive idempotents of a simple Jordan algebra over Φ \Phi is an irreducible algebraic set.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. Séminaire “Sophus Lie” de l’école normale supérieure 1954/55, Secrétariat mathématique, Paris, 1955. MR 17, 384.

2. C. Chevalley, Théorie des groupes de Lie. Vols. II, III, Actualités Sci. Indust., nos. 1152, 1226, Hermann, Paris, 1951, 1955. MR 14, 448; MR 16, 901.

3. On the automorphism group of a semisimple Jordan algebra of characteristic zero;Gordon, S. Robert;Bull. Amer. Math. Soc.,1969

4. Über Automorphismen und Derivationen von Jordan-Algebren;Helwig, Karl-Heinz;Nederl. Akad. Wetensch. Proc. Ser. A 70=Indag. Math.,1967

5. \bysame, Halbeinfache Reele Jordan-Algebren, Habilitationsschrift, München, 1967.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bibliography;Pure and Applied Mathematics;1982

2. Nonassociative rings;Journal of Soviet Mathematics;1982-01

3. On the structure group of a split semisimple jordan algebra II;Communications in Algebra;1977-01

4. An integral basis theorem for Jordan algebras;Journal of Algebra;1973-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3