Let
a
1
>
a
2
>
⋯
>
a
n
{a_1} > {a_2} > \cdots > {a_n}
be a finite sequence of positive integers containing a prime power
p
d
{p^d}
with the property:
a
i
≠
p
k
a
j
{a_i} \ne {p^k}{a_j}
for all
i
,
j
i,j
and
k
>
0
k > 0
. Then
max
i
,
j
a
i
/
(
a
i
,
a
j
)
≥
n
{\max _{i,j}}{a_i}/\left ( {{a_i},{a_j}} \right ) \geq n
.