One-parameter semigroups holomorphic away from zero

Author:

Certain Melinda W.

Abstract

Suppose T T is a one-parameter semigroup of bounded linear operators on a Banach space, strongly continuous on [ 0 , ) [0,\infty ) . It is known that lim sup x 0 | T ( x ) I | > 2 \lim {\sup _{x \to 0}}|T(x) - I| > 2 implies T T is holomorphic on ( 0 , ) (0,\infty ) . Theorem I is a generalization of this as follows: Suppose M > 0 , 0 > r > s M > 0,0 > r > s , and ρ \rho is in (1,2). If | ( T ( h ) I ) n | M ρ n |{(T(h) - I)^n}| \leq M{\rho ^n} whenever n h nh is in [ r , s ] , n = 1 , 2 , , h > 0 [r,s],n = 1,2, \cdots ,h > 0 , then there exists b > 0 b > 0 such that T T is holomorphic on [ b , ) [b,\infty ) . Theorem II shows that, in some sense, b 0 b \to 0 as r 0 r \to 0 . Theorem I is an application of Theorem III: Suppose M > 0 , 0 > r > s , ρ M > 0,0 > r > s,\rho is in (1,2), and f f is continuous on [ 4 s , 4 s ] [ - 4s,4s] . If | q = 0 n ( n q ) ( 1 ) n q f ( t + q h ) | M ρ n |\sum _{q = 0}^n \binom {n}{q}( - 1)^{n - q} f(t + qh)| \leq M \rho ^n whenever n h nh is in [ r , s ] [r,s] , n = 1 n = 1 , 2 2 , …, h > 0 h > 0 , [ t , t + n h ] [ 4 s , 4 s ] [t,t + nh] \subset [ - 4s,4s] , then f f has an analytic extension to an ellipse with center zero. Theorem III is a generalization of a theorem of Beurling in which the inequality on the differences is assumed for all n h nh . An example is given to show the hypothesis of Theorem I does not imply T T holomorphic on ( 0 , ) (0,\infty ) .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference9 articles.

1. S. Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d’une variable réelle, Gauthiers-Villars, Paris, 1926.

2. A. Beurling, On quasi-analyticity and general distributions, Multigraphed lecture notes, Stanford University, Stanford, Calif., 1961, Lecture 3.

3. On analytic extension of semigroups of operators;Beurling, Arne;J. Functional Analysis,1970

4. American Mathematical Society Colloquium Publications, Vol. 31;Hille, Einar,1957

5. A characterization of holomorphic semigroups;Kato, Tosio;Proc. Amer. Math. Soc.,1970

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3