Classical quotient rings

Author:

Shock Robert C.

Abstract

Throughout R is a ring with right singular ideal Z ( R ) Z(R) . A right ideal K of R is rationally closed if x 1 K = { y R : x y K } {x^{ - 1}}K = \{ y \in R:xy \in K\} is not a dense right ideal for all x R K x \in R - K . A ring R is a Cl-ring if R is (Goldie) right finite dimensional, R / Z ( R ) R/Z(R) is semiprime, Z ( R ) Z(R) is rationally closed, and Z ( R ) Z(R) contains no closed uniform right ideals. These rings include the quasi-Frobenius rings as well as the semiprime Goldie rings. The commutative Cl-rings have Cl-classical quotient rings. The injective ones are congenerator rings. In what follows, R is a Cl-ring. A dense right ideal of R contains a right nonzero divisor. If R satisfies the minimum condition on rationally closed right ideals then R has a classical Artinian quotient ring. The complete right quotient ring Q (also called the Johnson-Utumi maximal quotient ring) of R is a Cl-ring. If R has the additional property that bR is dense whenever b is a right nonzero divisor, then Q is classical. If Q is injective, then Q is classical.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference20 articles.

1. Rings with ascending condition on annihilators;Faith, Carl;Nagoya Math. J.,1966

2. Direct-sum representations of injective modules;Faith, Carl;J. Algebra,1967

3. A generalized ring of quotients. I, II;Findlay, G. D.;Canad. Math. Bull.,1958

4. Des catégories abéliennes;Gabriel, Pierre;Bull. Soc. Math. France,1962

5. Semi-prime rings with maximum condition;Goldie, A. W.;Proc. London Math. Soc. (3),1960

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Orders of direct products of simple Artinian rings;Algebra and Logic;1981-11

2. Associative rings;Journal of Soviet Mathematics;1980-07

3. CLASSICAL QUOTIENT RINGS OF GROUP RINGS;Quaestiones Mathematicae;1976-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3