The concordance diffeomorphism group of real projective space

Author:

Wells Robert

Abstract

Let P r {P_r} be r-dimensional real projective space with r odd, and let π 0 Diff + : P r {\pi _0}{\text {Diff}^ + }:{P_r} be the group of orientation preserving diffeomorphisms P r P r {P_r} \to {P_r} factored by the normal subgroup of those concordant (= pseudoisotopic) to the identity. The main theorem of this paper is that for r 11 mod 16 r \equiv 11 \bmod 16 the group π 0 Diff + : P r {\pi _0}{\text {Diff}^ + }:{P_r} is isomorphic to the homotopy group π r + 1 + k ( P / P k 1 ) {\pi _{r + 1 + k}}({P_\infty }/{P_{k - 1}}) , where k = d 2 L r 1 k = d{2^L} - r - 1 with L φ ( ( r + 1 ) / 2 ) L \geq \varphi ((r + 1)/2) and d 2 L r + 1 d{2^L} \geq r + 1 . The function φ \varphi is denned by φ ( l ) = { i | 0 > i l , i 0 , 1 , 2 , 4 mod ( 8 ) } \varphi (l) = \{ i|0 > i \leq l,i \equiv 0,1,2,4 \bmod (8)\} . The theorem is proved by introducing a cobordism version of the mapping torus construction; this mapping torus construction is a homomorphism t : π 0 Diff + : P r Ω r + 1 ( v ) t:{\pi _0}{\text {Diff}^ + }:{P_r} \to {\Omega _{r + 1}}(v) for r 11 mod 16 r \equiv 11 \bmod 16 and Ω r + 1 ( v ) {\Omega _{r + 1}}(v) a suitable Lashof cobordism group. It is shown that t is an isomorphism onto the torsion subgroup Ω r + 1 ( v ) {\Omega _{r + 1}}(v) , and that this subgroup is isomorphic to π r + 1 + k ( P / P k 1 ) {\pi _{r + 1 + k}}({P_\infty }/{P_{k - 1}}) as above. Then one reads off from Mahowald’s tables of π n + m ( P / P m 1 ) {\pi _{n + m}}({P_\infty }/{P_{m - 1}}) that π 0 Diff + : P 11 = Z 2 {\pi _0}{\text {Diff}^ + }:{P_{11}} = {Z_2} and π 0 Diff + : P 27 = 6 Z 2 {\pi _0}{\text {Diff}^ + }:{P_{27}} = 6{Z_2} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference14 articles.

1. Lecture Notes in Mathematics, Vol. 215;Antonelli, Peter L.,1971

2. Groups of homotopy spheres. I;Kervaire, Michel A.;Ann. of Math. (2),1963

3. Poincaré duality and cobordism;Lashof, R.;Trans. Amer. Math. Soc.,1963

4. Memoirs of the American Mathematical Society, No. 72;Mahowald, Mark,1967

5. H. Schneider, Free involutions of homotopy 𝑆^{[𝑛/2]}×𝑆^{[(𝑛+1)/2],}𝑠,, Thesis, University of Chicago, Chicago, Ill., 1972.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The mapping torus construction and concordance of diffeomorphisms;Boletim da Sociedade Brasileira de Matemática;1974-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3