Jacobi polynomials as generalized Faber polynomials

Author:

Zayed Ahmed I.

Abstract

Let B {\mathbf {B}} be an open bounded subset of the complex z z -plane with closure B ¯ \overline {\mathbf {B}} whose complement B ¯ c {\overline {\mathbf {B}} ^c} is a simply connected domain on the Riemann sphere. z = ψ ( w ) z = \psi (w) map the domain | w | > ρ ( ρ > 0 ) \left | w \right | > \rho \quad (\rho > 0) one-to-one conformally onto the domain B ¯ c {\overline {\mathbf {B}} ^c} such that ψ ( ) = \psi (\infty ) = \infty . Let R ( w ) = n = 0 c n w n R(w) = \sum \nolimits _{n = 0}^\infty {{c_n}{w^{ - n}}} , c 0 0 {c_0} \ne 0 be analytic in the domain | w | > ρ \left | w \right | > \rho with R ( w ) 0 R(w) \ne 0 . Let F ( z ) = n = 0 b n z n F(z) = \sum \nolimits _{n = 0}^\infty {{b_n}} {z^n} , F ( z ) = n = 0 1 b n z n F*(z) = \sum \nolimits _{n = 0}^\infty {\frac {1} {{{b_n}}}} {z^n} be analytic in | z | > 1 \left | z \right | > 1 and analytically continuable to any point outside | z | > 1 \left | z \right | > 1 along any path not passing through the points z = 0 , 1 , z = 0,1,\infty . The generalized Faber polynomials { P n ( z ) } n = 0 \{ {P_n}(z)\} _{n = 0}^\infty of B {\mathbf {B}} are defined by \[ t ψ ( t ) ψ ( t ) R ( t ) F ( z ψ ( t ) ) = n = 0 P n ( z ) 1 t n , | t | > ρ \frac {{t\psi ’(t)}} {{\psi (t)}}R(t)F\left ( {\frac {z} {{\psi (t)}}} \right ) = \sum \limits _{n = 0}^\infty {{P_n}(z)\frac {1} {{{t^n}}},} \quad \left | t \right | > \rho \] . The aim of this paper is to show that (1) if the Jacobi polynomials { P n ( α , β ) ( z ) } n = 0 \{ P_n^{(\alpha ,\beta )}(z)\} _{n = 0}^\infty are generalized Faber polynomials of any region B {\mathbf {B}} , then it must be the elliptic region { z : | z + 1 | + | z 1 | > ρ + 1 ρ , ρ > 1 } ; \{ z:|z + 1| + |z - 1| > \rho + \frac {1}{\rho },\rho > 1\} ; (2) the only Jacobi polynomials that can be classified as generalized Faber polynomials are the Tchebycheff polynomials of the first kind, some normalized Gegenbauer polynomials, some normalized Jacobi polynomials of type { P n ( α , α + 1 ) ( z ) } n = 0 \{ P_n^{(\alpha ,\alpha + 1)}(z)\} _{n = 0}^\infty , { P n ( β + 1 , β ) ( z ) } n = 0 \{ P_n^{(\beta + 1,\beta )}(z)\} _{n = 0}^\infty and there are no others, no matter how one normalizes them; (3) the Hermite and Laguerre polynomials cannot be generalized Faber polynomials of any region.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference13 articles.

1. Orthogonal Polynomials and Special Functions

2. G. Faber, Über polynomische Entwicklungen, Math. Ann. 57 (1903), 389-408; 64 (1907), 116-135.

3. Ya. L. Geronimus, Polynomials, orthogonal on a a circle and on an interval, Fizmatgiz, Moscow, 1958.

4. Integral operator methods in bi-axially symmetric potential theory;Gilbert, R. P.;Contributions to Differential Equations,1963

5. Bergman’s integral operator method in generalized axially symmetric potential theory;Gilbert, R. P.;J. Mathematical Phys.,1964

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A (little) step towards orthogonality of analytic polynomials;Journal of Computational and Applied Mathematics;1993-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3