Application of the generalized Weierstrass preparation theorem to the study of homogeneous ideals

Author:

Amasaki Mutsumi

Abstract

The system of Weierstrass polynomials, defined originally for ideals in convergent power series rings, together with its sequence of degrees allows us to analyze a homogeneous ideal directly. Making use of it, we study local cohomology modules, syzygies, and then graded Buchsbaum rings. Our results give a formula which to some extent clarifies the connection among the matrices appearing in the free resolution starting from a system of Weierstrass polynomials, a rough classification of graded Buchsbaum rings in the general case and a complete classification of graded Buchsbaum integral domains of codimension two.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference28 articles.

1. Preparatory structure theorem for ideals defining space curves;Amasaki, Mutsumi;Publ. Res. Inst. Math. Sci.,1983

2. On the structure of arithmetically Buchsbaum curves in 𝑃³_{𝑘};Amasaki, Mutsumi;Publ. Res. Inst. Math. Sci.,1984

3. Examples of nonsingular irreducible curves which give reducible singular points of 𝑟𝑒𝑑(𝐻_{𝑑,𝑔});Amasaki, Mutsumi;Publ. Res. Inst. Math. Sci.,1985

4. Curves in 𝑃³ whose ideals are simple in a certain numerical sense;Amasaki, Mutsumi;Publ. Res. Inst. Math. Sci.,1987

5. Integral arithmetically Buchsbaum curves in 𝑃³;Amasaki, Mutsumi;J. Math. Soc. Japan,1989

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Encoding Algebraic Power Series;Foundations of Computational Mathematics;2017-05-26

2. On the free resolution induced by a Pommaret basis;Journal of Symbolic Computation;2015-05

3. A combinatorial approach to involution and δ-regularity II: structure analysis of polynomial modules with pommaret bases;Applicable Algebra in Engineering, Communication and Computing;2009-07

4. Buchsbaum homogeneous algebras with minimal multiplicity;Journal of Pure and Applied Algebra;2007-09

5. Maximal Buchsbaum modules over Gorenstein local rings;Journal of Algebra;2005-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3