On linear algebraic semigroups. II

Author:

Putcha Mohan S.

Abstract

We continue from [11] the study of linear algebraic semigroups. Let S be a connected algebraic semigroup defined over an algebraically closed field K. Let U ( S ) \mathcal {U}(S) be the partially ordered set of regular J \mathcal {J} -classes of S and let E ( S ) E(S) be the set of idempotents of S. The following theorems (among others) are proved. (1) U ( S ) \mathcal {U}(S) is a finite lattice. (2) If S is regular and the kernel of S is a group, then the maximal semilattice image of S is isomorphic to the center of E ( S ) E(S) . (3) If S is a Clifford semigroup and f E ( S ) f\, \in \,E(S) , then the set { e | e E ( S ) , e f } \{ \,e\,|\,e\, \in \,E(S),\,e\, \geqslant \,f\} is finite. (4) If S is a Clifford semigroup, then there is a commutative connected closed Clifford subsemigroup T of S with zero such that T intersects each J \mathcal {J} -class of S. (5) If S is a Clifford semigroup with zero, then S is commutative and is in fact embeddable in ( K n , ) ({K^n},\, \cdot ) for some n Z + n\, \in \,{\textbf {Z}^ + } . (6) If ch K = 0 {\text {ch}}\, \cdot \,K\, = \,0 and S is a commutative Clifford semigroup, then S is isomorphic to a direct product of an abelian connected unipotent group and a closed connected subsemigroup of ( K n , ) ({K^n},\, \cdot ) for some n Z + n\, \in \,{\textbf {Z}^ + } . (7) If S is a regular semigroup and dim S 2 {\text {dim}}\, \cdot \,S\, \leqslant \,2 , then | U ( S ) | 4 \left | {\mathcal {U}(S)} \right |\, \leqslant \,4 . (8) If S is a Clifford semigroup with zero and dim S = 3 {\text {dim}}\, \cdot \,S\, = \,3 , then | E ( S ) | = | U ( S ) | \left | {E(S)} \right |\, = \,\left | {\mathcal {U}(S)} \right | can be any even number 8 \geqslant \,8 . (9) If S is a Clifford semigroup then U ( S ) \mathcal {U}(S) is a relatively complemented lattice and all maximal chains in U ( S ) \mathcal {U}(S) have the same number of elements.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference14 articles.

1. Semigroups admitting relative inverses;Clifford, A. H.;Ann. of Math. (2),1941

2. Mathematical Surveys, No. 7;Clifford, A. H.,1961

3. P. Crawley and R. P. Dilworth, Algebraic theory of lattices, Prentice-Hall, Englewood Cliffs, N. J., 1973.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cohen-Macaulay algebraic monoids;Proceedings of the American Mathematical Society;1983

2. Matrix semigroups;Proceedings of the American Mathematical Society;1983

3. The unit groups of affine algebraic monoids;Proceedings of the American Mathematical Society;1982

4. Connected algebraic monoids;Transactions of the American Mathematical Society;1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3