Character sums and congruences with 𝑛!

Author:

Garaev Moubariz,Luca Florian,Shparlinski Igor

Abstract

We estimate character sums with n ! n! , on average, and individually. These bounds are used to derive new results about various congruences modulo a prime p p and obtain new information about the spacings between quadratic nonresidues modulo p p . In particular, we show that there exists a positive integer n p 1 / 2 + ε n\ll p^{1/2+\varepsilon } such that n ! n! is a primitive root modulo p p . We also show that every nonzero congruence class a 0 ( mod p ) a \not \equiv 0 \pmod p can be represented as a product of 7 factorials, a n 1 ! n 7 ! ( mod p ) a \equiv n_1! \ldots n_7! \pmod p , where max { n i   |   i = 1 , , 7 } = O ( p 11 / 12 + ε ) \max \{n_i \ |\ i=1,\ldots , 7\}=O(p^{11/12+\varepsilon }) , and we find the asymptotic formula for the number of such representations. Finally, we show that products of 4 factorials n 1 ! n 2 ! n 3 ! n 4 ! , n_1!n_2!n_3!n_4!, with max { n 1 , n 2 , n 3 , n 4 } = O ( p 6 / 7 + ε ) \max \{n_1, n_2, n_3, n_4\}=O(p^{6/7+\varepsilon }) represent “almost all” residue classes modulo p, and that products of 3 factorials n 1 ! n 2 ! n 3 ! n_1!n_2!n_3! with max { n 1 , n 2 , n 3 } = O ( p 5 / 6 + ε ) \max \{n_1, n_2, n_3\}=O(p^{5/6+\varepsilon }) are uniformly distributed modulo p p .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference18 articles.

1. Polynomial congruences over incomplete residue systems, modulo 𝑘;Chalk, J. H. H.;Nederl. Akad. Wetensch. Indag. Math.,1989

2. The sequence 𝑛! (mod 𝑝);Cobeli, C.;J. Ramanujan Math. Soc.,2000

3. A survey on pure and mixed exponential sums modulo prime powers;Cochrane, Todd,2002

4. Lecture Notes in Mathematics;Drmota, Michael,1997

5. On the greatest and least prime factors of 𝑛!+1;Erdős, P.;J. London Math. Soc. (2),1976

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the sequence $n! \bmod p$;Revista Matemática Iberoamericana;2023-04-05

2. On the number of representations by n! modulo a prime and applications;Monatshefte für Mathematik;2022-03-19

3. Distribution of a Subset of Non-residues Modulo p;Springer Proceedings in Mathematics & Statistics;2018

4. On asymptotic density properties of the sequence $(n!)_{n=0}^\infty $;Acta Arithmetica;2018

5. Distribution of factorials modulo p;Journal de Théorie des Nombres de Bordeaux;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3