Dimension of families of determinantal schemes

Author:

Kleppe Jan,Miró-Roig Rosa

Abstract

A scheme X P n + c X\subset \mathbb {P}^{n+c} of codimension c c is called standard determinantal if its homogeneous saturated ideal can be generated by the maximal minors of a homogeneous t × ( t + c 1 ) t \times (t+c-1) matrix and X X is said to be good determinantal if it is standard determinantal and a generic complete intersection. Given integers a 0 , a 1 , . . . , a t + c 2 a_0,a_1,...,a_{t+c-2} and b 1 , . . . , b t b_1,...,b_t we denote by W ( b _ ; a _ ) Hilb p ( P n + c ) W(\underline {b};\underline {a})\subset \operatorname {Hilb} ^p(\mathbb {P}^{n+c}) (resp. W s ( b _ ; a _ ) W_s(\underline {b};\underline {a}) ) the locus of good (resp. standard) determinantal schemes X P n + c X\subset \mathbb {P}^{n+c} of codimension c c defined by the maximal minors of a t × ( t + c 1 ) t\times (t+c-1) matrix ( f i j ) j = 0 , . . . , t + c 2 i = 1 , . . . , t (f_{ij})^{i=1,...,t}_{j=0,...,t+c-2} where f i j k [ x 0 , x 1 , . . . , x n + c ] f_{ij}\in k[x_0,x_1,...,x_{n+c}] is a homogeneous polynomial of degree a j b i a_j-b_i . In this paper we address the following three fundamental problems: To determine (1) the dimension of W ( b _ ; a _ ) W(\underline {b};\underline {a}) (resp. W s ( b _ ; a _ ) W_s(\underline {b};\underline {a}) ) in terms of a j a_j and b i b_i , (2) whether the closure of W ( b _ ; a _ ) W(\underline {b};\underline {a}) is an irreducible component of Hilb p ( P n + c ) \operatorname {Hilb} ^p(\mathbb {P}^{n+c}) , and (3) when Hilb p ( P n + c ) \operatorname {Hilb} ^p(\mathbb {P}^{n+c}) is generically smooth along W ( b _ ; a _ ) W(\underline {b};\underline {a}) . Concerning question (1) we give an upper bound for the dimension of W ( b _ ; a _ ) W(\underline {b};\underline {a}) (resp. W s ( b _ ; a _ ) W_s(\underline {b};\underline {a}) ) which works for all integers a 0 , a 1 , . . . , a t + c 2 a_0,a_1,...,a_{t+c-2} and b 1 , . . . , b t b_1,...,b_t , and we conjecture that this bound is sharp. The conjecture is proved for 2 c 5 2\le c\le 5 , and for c 6 c\ge 6 under some restriction on a 0 , a 1 , . . . , a t + c 2 a_0,a_1,...,a_{t+c-2} and b 1 , . . . , b t b_1,...,b_t . For questions (2) and (3) we have an affirmative answer for 2 c 4 2\le c \le 4 and n 2 n\ge 2 , and for c 5 c\ge 5 under certain numerical assumptions.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference26 articles.

1. The Koszul algebra of a codimension 2 embedding;Avramov, Lâcezar;Math. Z.,1980

2. D. Bayer and M. Stillman, Macaulay: A system for computation in algebraic geometry and commutative algebra. Source and object code available for Unix and Macintosh computers. Contact the authors, or download from ftp://math.harvard.edu via anonymous ftp.

3. The Eisenbud-Evans generalized principal ideal theorem and determinantal ideals;Bruns, Winfried;Proc. Amer. Math. Soc.,1981

4. Cambridge Studies in Advanced Mathematics;Bruns, Winfried,1993

5. Lecture Notes in Mathematics;Bruns, Winfried,1988

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deformation and Unobstructedness of Determinantal Schemes;Memoirs of the American Mathematical Society;2023-06

2. On Stability of Logarithmic Tangent Sheaves: Symmetric and Generic Determinants;International Mathematics Research Notices;2021-09-02

3. Families of artinian and low dimensional determinantal rings;Journal of Pure and Applied Algebra;2018-03

4. The Representation Type of Determinantal Varieties;Algebras and Representation Theory;2017-02-25

5. On the normal sheaf of determinantal varieties;Journal für die reine und angewandte Mathematik (Crelles Journal);2016-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3