Plünnecke’s Theorem for asymptotic densities

Author:

Jin Renling

Abstract

Plünnecke proved that if B N B\subseteq \mathbb {N} is a basis of order h > 1 h>1 , i.e., σ ( h B ) = 1 \sigma (hB)=1 , then σ ( A + B ) σ ( A ) 1 1 h \sigma (A+B)\geqslant \sigma (A)^{1-\frac {1}{h}} , where A A is an arbitrary subset of N \mathbb {N} and σ \sigma represents Shnirel’man density. In this paper we explore whether σ \sigma can be replaced by other asymptotic densities. We show that Plünnecke’s inequality above is true if σ \sigma is replaced by lower asymptotic density d _ \underline {d} or by upper Banach density B D BD but not by upper asymptotic density d ¯ \overline {d} . The result about d _ \underline {d} has some interesting consequences such as the inequality d _ ( A + P ) d _ ( A ) 2 / 3 \underline {d}(A+P)\geqslant \underline {d}(A)^{2/3} for any A N A\subseteq \mathbb {N} , where P P is the set of all prime numbers, and the inequality d _ ( A + C ) d _ ( A ) 3 / 4 \underline {d}(A+C)\geqslant \underline {d}(A)^{3/4} for any A N A\subseteq \mathbb {N} , where C C is the set of all cubes of nonnegative integers. The result about B D BD generalizes Theorem 3 of a 2001 work of the author by reducing the requirement of B B being a piecewise basis to the requirement of B B being an upper Banach basis.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plünnecke inequalities for countable abelian groups;Journal für die reine und angewandte Mathematik;2017-01-01

2. Plünnecke inequalities for measure graphs with applications;Ergodic Theory and Dynamical Systems;2015-10-06

3. A compendium of results in additive number theory;São Paulo Journal of Mathematical Sciences;2015-05-29

4. Density Problems and Freiman’s Inverse Problems;Nonstandard Analysis for the Working Mathematician;2015

5. Density Versions of Plünnecke Inequality: Epsilon-Delta Approach;Combinatorial and Additive Number Theory;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3