On the embedded primary components of ideals. IV

Author:

Heinzer William,Ratliff L. J.,Shah Kishor

Abstract

The results in this paper expand the fundamental decomposition theory of ideals pioneered by Emmy Noether. Specifically, let I I be an ideal in a local ring ( R , M ) (R,M) that has M M as an embedded prime divisor, and for a prime divisor P P of I I let I C P ( I ) I{C_P}(I) be the set of irreducible components q q of I I that are P P -primary (so there exists a decomposition of I I as an irredundant finite intersection of irreducible ideals that has q q as a factor). Then the main results show: (a) I C M ( I ) = { I C M ( Q ) ; Q is a  MEC  of  I } I{C_M}(I) = \cup \{ I{C_M}(Q);Q\;{\text {is a }}\operatorname {MEC} {\text { of }}I\} ( Q Q is a MEC of I I in case Q Q is maximal in the set of M M -primary components of I I ); (b) if I = { q i ; i = 1 , , n } I = \cap \{ {q_i};i = 1, \ldots ,n\} is an irredundant irreducible decomposition of I I such that q i {q_i} is M M -primary if and only if i = 1 , , k > n i = 1, \ldots ,k > n , then { q i ; i = 1 , , k } \cap \{ {q_i};i = 1, \ldots ,k\} is an irredundant irreducible decomposition of a MEC of I I , and, conversely, if Q Q is a MEC of I I and if { Q j ; j = 1 , , m } \cap \{ {Q_j};j = 1, \ldots ,m\} (resp., { q i ; i = 1 , , n } \cap \{ {q_i};i = 1, \ldots ,n\} ) is an irredundant irreducible decomposition of Q Q (resp., I I ) such that q 1 , , q k {q_1}, \ldots ,{q_k} are the M M -primary ideals in { q 1 , , q n } \{ {q_1}, \ldots ,{q_n}\} , then m = k m = k and ( { q i ; i = k + 1 , , n } ) ( { Q j ; j = 1 , , m } ) ( \cap \{ {q_i};i = k + 1, \ldots ,n\} ) \cap ( \cap \{ {Q_j};j = 1, \ldots ,m\} ) is an irredundant irreducible decomposition of I I ; (c) I C M ( I ) = { q , q is maximal in the set of ideals that contain  I and do not contain  I : M } I{C_M}(I) = \{ q,q\;{\text {is maximal in the set of ideals that contain }}I\;{\text {and do not contain }}I:M\} ; (d) if Q Q is a MEC of I I , then I C M ( Q ) = { q ; Q q I C M ( I ) } I{C_M}(Q) = \{ q;Q \subseteq q \in I{C_M}(I)\} ; (e) if J J is an ideal that lies between I I and an ideal Q I C M ( I ) Q \in I{C_M}(I) , then J = { q ; J q I C M ( I ) } J = \cap \{ q;J \subseteq q \in I{C_M}(I)\} ; and, (f) there are no containment relations among the ideals in { I C P ( I ) \cup \{ I{C_P}(I) ; P P is a prime divisor of I I }.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference6 articles.

1. On the embedded primary components of ideals. I;Heinzer, William;J. Algebra,1994

2. On the embedded primary components of ideals. II;Heinzer, William;J. Pure Appl. Algebra,1995

3. On the embedded primary components of ideals. III;Heinzer, William;J. Algebra,1995

4. Cambridge Studies in Advanced Mathematics;Matsumura, Hideyuki,1986

5. Idealtheorie in Ringbereichen;Noether, Emmy;Math. Ann.,1921

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3