Patching subfields of division algebras

Author:

Harbater David,Hartmann Julia,Krashen Daniel

Abstract

Given a field F F , one may ask which finite groups are Galois groups of field extensions E / F E/F such that E E is a maximal subfield of a division algebra with center F F . This question was originally posed by Schacher, who gave partial results in the case F = Q F = \mathbb Q . Using patching, we give a complete characterization of such groups in the case that F F is the function field of a curve over a complete discretely valued field with algebraically closed residue field of characteristic zero, as well as results in related cases.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference30 articles.

1. Resolution of singularities of algebraic surfaces;Abhyankar, Shreeram Shankar,1969

2. Sylow-metacyclic groups and 𝑄-admissibility;Chillag, David;Israel J. Math.,1981

3. [COP02] Jean-Louis Colliot-Thélène, Manuel Ojanguren and Raman Parimala, Quadratic forms over fraction fields of two-dimensional Henselian rings and Brauer groups of related schemes. In: Proceedings of the International Colloquium on Algebra, Arithmetic and Geometry, Tata Inst. Fund. Res. Stud. Math., vol. 16, pp. 185–217, Narosa Publ. Co., 2002. Preprint at ⟨http://www.math.u-psud.fr/∼colliot/CTOjPa22may01.ps⟩.

4. Lecture Notes in Mathematics, Vol. 181;DeMeyer, Frank,1971

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bounding cohomology classes over semiglobal fields;Israel Journal of Mathematics;2023-11

2. FIELDS OF DEFINITION FOR ADMISSIBLE GROUPS;Albanian Journal of Mathematics;2023-09-07

3. Local-Global Principles for Constant Reductive Groups over Semi-Global Fields;Michigan Mathematical Journal;2022-08-01

4. On parametric and generic polynomials with one parameter;Journal of Pure and Applied Algebra;2021-10

5. The admissibility of M11 over number fields;Journal of Pure and Applied Algebra;2018-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3