Ricci flatness of asymptotically locally Euclidean metrics

Author:

Ni Lei,Shi Yuguang,Tam Luen-Fai

Abstract

In this article we study the metric property and the function theory of asymptotically locally Euclidean (ALE) Kähler manifolds. In particular, we prove the Ricci flatness under the assumption that the Ricci curvature of such manifolds is either nonnegative or nonpositive. The result provides a generalization of previous gap type theorems established by Greene and Wu, Mok, Siu and Yau, etc. It can also be thought of as a general positive mass type result. The method also proves the Liouville properties of plurisubharmonic functions on such manifolds. We also give a characterization of Ricci flatness of an ALE Kähler manifold with nonnegative Ricci curvature in terms of the structure of its cone at infinity.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference47 articles.

1. Lower curvature bounds, Toponogov’s theorem, and bounded topology;Abresch, Uwe;Ann. Sci. \'{E}cole Norm. Sup. (4),1985

2. [An] M.-T. Anderson, The compactification of a minimal submanifold in Euclidean spaces by the Gauss map, IHES preprint, 1984.

3. On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth;Bando, Shigetoshi;Invent. Math.,1989

4. The mass of an asymptotically flat manifold;Bartnik, Robert;Comm. Pure Appl. Math.,1986

5. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)];Besse, Arthur L.,1987

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Expansions of Ricci Flat ALE Metrics in Harmonic Coordinates About the Infinity;Communications in Mathematics and Statistics;2019-07-26

2. Two conjectures on Ricci-flat Kähler metrics;Mathematische Zeitschrift;2018-01-10

3. Maximum magnetic moment to angular momentum conjecture;Physical Review D;2017-03-24

4. Complete non-compact gradient Ricci solitons with nonnegative Ricci curvature;Mathematische Zeitschrift;2014-09-17

5. MONOTONICITY FORMULAE, VANISHING THEOREMS AND SOME GEOMETRIC APPLICATIONS;The Quarterly Journal of Mathematics;2013-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3