On infinite deficiency in 𝑅^{∞}-manifolds

Author:

Liem Vo Thanh

Abstract

Using the notion of inductive proper q 1 LCC q - 1 - {\text {LCC}} introduced in this note, we will prove the following theorems. Theorem 1. Let M M be an R {R^\infty } -manifold and let H : X × I M H:X \times I \to M be a homotopy such that H 0 {H_0} and H 1 {H_1} are R {R^\infty } -deficient embeddings. Then, there is a homeomorphism F F of M M such that F H 0 = H 1 F \circ {H_0} = {H_1} . Moreover, if H H is limited by an open cover α \alpha of M M and is stationary on a closed subset X 0 {X_0} of X X and W 0 {W_0} is an open neighborhood of \[ H [ ( X X 0 ) × I ] i n M , H[(X - {X_0}) \times I] \quad {in\;M,} \] then we can choose F F to also be St 4 ( α ) \operatorname {St}^4(\alpha ) -close to the identity and to be the identity on X ˙ 0 ( M W 0 ) \dot X_{0} \cup (M - {W_0}) . Theorem 2. Every closed, locally R ( Q ) {R^\infty }({Q^\infty }) -deficient subset of an R ( Q ) {R^\infty }({Q^\infty }) -manifold M M is R ( Q ) {R^\infty }({Q^\infty }) -deficient in M M . Consequently, every closed, locally compact subset of M M is R ( Q ) {R^\infty }({Q^\infty }) -deficient in M M .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference20 articles.

1. Pure and Applied Mathematics, Vol. 46;Bredon, Glen E.,1972

2. On embeddings of compacta in Euclidean space;Bryant, J. L.;Proc. Amer. Math. Soc.,1969

3. Regional Conference Series in Mathematics, No. 28;Chapman, T. A.,1976

4. Allyn and Bacon Series in Advanced Mathematics;Dugundji, James,1978

5. The homeomorphism group of a compact Hilbert cube manifold is an 𝐴𝑁𝑅;Ferry, Steve;Ann. of Math. (2),1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3