Ring extensions and essential monomorphisms

Author:

Würfel Tilmann

Abstract

We study pairs of rings R S R \subset S such that Hom R ( S , ) : R Mod S Mod \operatorname {Hom}_R(S, - ):R - \operatorname {Mod} \to S - \operatorname {Mod} preserves essential monomorphisms. We obtain a complete characterization of such a pair in case S is a torsion-free algebra over a Noetherian domain R Q u o t ( R ) R \ne \mathrm {Quot}(R) ; S is then a left ideally finite R-algebra. The rings R such that every ring extension R S R \subset S satisfies the above condition are subdirect sums of certain Artinian rings. Furthermore, we study a generalization of trivial ring extensions and show that the center of a semi-Artinian ring is again semi-Artinian.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference8 articles.

1. Subrings of Artinian and Noetherian rings;Eisenbud, David;Math. Ann.,1970

2. Subrings of Noetherian rings;Formanek, Edward;Proc. Amer. Math. Soc.,1974

3. On generalized regular rings;Fuchs, László;Math. Z.,1968

4. A note on the quotient field of the domain 𝐷[[𝑋]];Gilmer, Robert;Proc. Amer. Math. Soc.,1967

5. Das Zentrum von Ringen mit Kettenbedingungen;Kasch, Friedrich;Bayer. Akad. Wiss. Math.-Natur. Kl. S.-B.,1970

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3