Representation functions of sequences in additive number theory

Author:

Nathanson Melvyn B.

Abstract

Let A \mathcal {A} be a set of nonnegative integers, and let r 2 A ( n ) r_2^\mathcal {A}(n) denote the number of representations of n in the form n = a i + a j n = {a_i} + {a_j} with a i , a j A {a_i},{a_j} \in \mathcal {A} . The set A \mathcal {A} is periodic if a A a \in \mathcal {A} implies a + m A a + m \in \mathcal {A} for some m 1 m \geqslant 1 and all a > N a > N . It is proved that if A \mathcal {A} is not periodic, then for every set B A \mathcal {B} \ne \mathcal {A} there exist infinitely many n such that r 2 A ( n ) r 2 B ( n ) r_2^\mathcal {A}(n) \ne r_2^\mathcal {B}(n) . Moreover, all pairs of periodic sets A \mathcal {A} and B \mathcal {B} are constructed that satisfy r 2 A ( n ) = r 2 B ( n ) r_2^\mathcal {A}(n) = r_2^\mathcal {B}(n) for all but finitely many n.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference7 articles.

1. On pseudo-squares;Atkin, A. O. L.;Proc. London Math. Soc. (3),1965

2. On a theorem of Erdős and Fuchs in additive number theory;Bateman, Paul T.;Proc. Amer. Math. Soc.,1963

3. On a problem of additive number theory;Erdös, P.;J. London Math. Soc.,1956

4. Tauberian theorems for sum sets;Erdős, P.;Acta Arith.,1964

5. Additive properties of random sequences of positive integers;Erdős, P.;Acta Arith.,1960

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Representation functions avoiding integers with density zero;European Journal of Combinatorics;2022-05

2. Note on a result of Chen and Lev;Periodica Mathematica Hungarica;2019-06-25

3. Cyclotomic Expressions for Representation Functions;Uniform distribution theory;2019-06-01

4. On the structure of some sets which have the same representation functions;Periodica Mathematica Hungarica;2018-05-12

5. Representation functions on finite sets with extreme symmetric differences;Journal of Number Theory;2017-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3