Self delta-equivalence for links whose Milnor’s isotopy invariants vanish

Author:

Yasuhara Akira

Abstract

For an n n -component link, Milnor’s isotopy invariants are defined for each multi-index I = i 1 i 2 . . . i m   ( i j { 1 , . . . , n } ) I=i_1i_2...i_m~(i_j\in \{1,...,n\}) . Here m m is called the length. Let r ( I ) r(I) denote the maximum number of times that any index appears in I I . It is known that Milnor invariants with r = 1 r=1 , i.e., Milnor invariants for all multi-indices I I with r ( I ) = 1 r(I)=1 , are link-homotopy invariant. N. Habegger and X. S. Lin showed that two string links are link-homotopic if and only if their Milnor invariants with r = 1 r=1 coincide. This gives us that a link in S 3 S^3 is link-homotopic to a trivial link if and only if all Milnor invariants of the link with r = 1 r=1 vanish. Although Milnor invariants with r = 2 r=2 are not link-homotopy invariants, T. Fleming and the author showed that Milnor invariants with r 2 r\leq 2 are self Δ \Delta -equivalence invariants. In this paper, we give a self Δ \Delta -equivalence classification of the set of n n -component links in S 3 S^3 whose Milnor invariants with length 2 n 1 \leq 2n-1 and r 2 r\leq 2 vanish. As a corollary, we have that a link is self Δ \Delta -equivalent to a trivial link if and only if all Milnor invariants of the link with r 2 r\leq 2 vanish. This is a geometric characterization for links whose Milnor invariants with r 2 r\leq 2 vanish. The chief ingredient in our proof is Habiro’s clasper theory. We also give an alternate proof of a link-homotopy classification of string links by using clasper theory.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference29 articles.

1. Link cobordism and Milnor’s invariant;Casson, A. J.;Bull. London Math. Soc.,1975

2. Derivatives of links: Milnor’s concordance invariants and Massey’s products;Cochran, Tim D.;Mem. Amer. Math. Soc.,1990

3. Grope cobordism of classical knots;Conant, James;Topology,2004

4. Milnor’s invariants and self 𝐶_{𝑘}-equivalence;Fleming, Thomas;Proc. Amer. Math. Soc.,2009

5. Milnor numbers and the self delta classification of 2-string links;Fleming, Thomas,2007

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On braids and links up to link-homotopy;Journal of the Mathematical Society of Japan;2023-05-31

2. Link-homotopy classes of 4-component links, claspers and the Habegger–Lin algorithm;Journal of Knot Theory and Its Ramifications;2023-05

3. Classification of string links up to 2n-moves and link-homotopy;Annales de l'Institut Fourier;2021-06-07

4. Arrow calculus for welded and classical links;Algebraic & Geometric Topology;2019-02-06

5. Self C2-equivalence of two-component links and invariants of link maps;Journal of Knot Theory and Its Ramifications;2018-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3