Multiloop realization of extended affine Lie algebras and Lie tori

Author:

Allison Bruce,Berman Stephen,Faulkner John,Pianzola Arturo

Abstract

An important theorem in the theory of infinite dimensional Lie algebras states that any affine Kac-Moody algebra can be realized (that is to say constructed explicitly) using loop algebras. In this paper, we consider the corresponding problem for a class of Lie algebras called extended affine Lie algebras (EALAs) that generalize affine algebras. EALAs occur in families that are constructed from centreless Lie tori, so the realization problem for EALAs reduces to the realization problem for centreless Lie tori. We show that all but one family of centreless Lie tori can be realized using multiloop algebras (in place of loop algebras). We also obtain necessary and sufficient conditions for two centreless Lie tori realized in this way to be isotopic, a relation that corresponds to isomorphism of the corresponding families of EALAs.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference32 articles.

1. Extended affine Lie algebras and their root systems;Allison, Bruce N.;Mem. Amer. Math. Soc.,1997

2. Realization of graded-simple algebras as loop algebras;Allison, Bruce;Forum Math.,2008

3. A characterization of affine Kac-Moody Lie algebras;Allison, Bruce N.;Comm. Math. Phys.,1997

4. Lie algebras graded by the root systems 𝐵𝐶ᵣ,𝑟≥2;Allison, Bruce;Mem. Amer. Math. Soc.,2002

5. Iterated loop algebras;Allison, Bruce;Pacific J. Math.,2006

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3