Energy bounds for a fourth-order equation in low dimensions related to wave maps

Author:

Schmid Tobias

Abstract

For compact, isometrically embedded Riemannian manifolds N R L N \hookrightarrow \mathbb {R}^L , we introduce a fourth-order version of the wave maps equation. By energy estimates, we prove an a priori estimate for smooth local solutions in the energy subcritical dimension n = 1 n = 1 , 2 2 . The estimate excludes blow-up of a Sobolev norm in finite existence times. In particular, combining this with recent work of local well-posedness of the Cauchy problem, it follows that for smooth initial data with compact support, there exists a (smooth) unique global solution in dimension n = 1 n=1 , 2 2 . We also give a proof of the uniqueness of solutions that are bounded in these Sobolev norms.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference11 articles.

1. A note on limiting cases of Sobolev embeddings and convolution inequalities;Brézis, Haïm;Comm. Partial Differential Equations,1980

2. On regularity criterion for the 2D wave maps and the 4D biharmonic wave maps;Fan, Jishan,2010

3. 2-harmonic maps and their first and second variational formulas;Guoying, Jiang;Note Mat.,2009

4. Biharmonic wave maps into spheres;Herr, Sebastian;Proc. Amer. Math. Soc.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3