Finite-dimensional representations of minimal nilpotent W-algebras and zigzag algebras

Author:

Petukhov Alexey

Abstract

Let g \frak g be a simple finite-dimensional Lie algebra over an algebraically closed field F \mathbb F of characteristic 0. We denote by U ( g ) \mathrm {U}(\frak g) the universal enveloping algebra of g \frak g . To any nilpotent element e g e\in \frak g one can attach an associative (and noncommutative as a general rule) algebra U ( g , e ) \mathrm {U}(\frak g, e) which is in a proper sense a “tensor factor” of U ( g ) \mathrm {U}(\frak g) . In this article we consider the case in which e e belongs to the minimal nonzero nilpotent orbit of g \frak g . Under these assumptions U ( g , e ) \mathrm {U}(\frak g, e) was described explicitly in terms of generators and relations. One can expect that the representation theory of U ( g , e ) \mathrm {U}(\frak g, e) would be very similar to the representation theory of U ( g ) \mathrm {U}(\frak g) . For example one can guess that the category of finite-dimensional U ( g , e ) \mathrm {U}(\frak g, e) -modules is semisimple.

The goal of this article is to show that this is the case if g \frak g is not simply-laced. We also show that, if g \frak g is simply-laced and is not of type A n A_n , then the regular block of finite-dimensional U ( g , e ) \operatorname {U}(\frak g, e) -modules is equivalent to the category of finite-dimensional modules of a zigzag algebra.

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference32 articles.

1. Primitive ideals and orbital integrals in complex classical groups;Barbasch, Dan;Math. Ann.,1982

2. Primitive ideals and orbital integrals in complex exceptional groups;Barbasch, Dan;J. Algebra,1983

3. Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras;Bernstein, J. N.;Compositio Math.,1980

4. Les sous-groupes fermés de rang maximum des groupes de Lie clos;Borel, A.;Comment. Math. Helv.,1949

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3