The number of positive solutions to the Brezis-Nirenberg problem

Author:

Cao Daomin,Luo Peng,Peng Shuangjie

Abstract

In this paper we are concerned with the well-known Brezis-Nirenberg problem { Δ u = u N + 2 N 2 + ε u , a m p ; in   Ω , u > 0 , a m p ; in   Ω , u = 0 , a m p ; on   Ω . \begin{equation*} \begin {cases} -\Delta u= u^{\frac {N+2}{N-2}}+\varepsilon u, &{\text {in}~\Omega },\\ u>0, &{\text {in}~\Omega },\\ u=0, &{\text {on}~\partial \Omega }. \end{cases} \end{equation*} The existence of multi-peak solutions to the above problem for small ε > 0 \varepsilon >0 was obtained (see Monica Musso and Angela Pistoia [Indiana Univ. Math. J. 51 (2002), pp. 541–579]). However, the uniqueness or the exact number of positive solutions to the above problem is still unknown. Here we focus on the local uniqueness of multi-peak solutions and the exact number of positive solutions to the above problem for small ε > 0 \varepsilon >0 .

By using various local Pohozaev identities and blow-up analysis, we first detect the relationship between the profile of the blow-up solutions and Green’s function of the domain Ω \Omega and then obtain a type of local uniqueness results of blow-up solutions. Lastly we give a description of the number of positive solutions for small positive ε \varepsilon , which depends also on Green’s function.

Funder

National Natural Science Foundation of China

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3