A random Schrödinger operator associated with the Vertex Reinforced Jump Process on infinite graphs

Author:

Sabot Christophe,Zeng Xiaolin

Abstract

This paper concerns the vertex reinforced jump process (VRJP), the edge reinforced random walk (ERRW), and their relation to a random Schrödinger operator. On infinite graphs, we define a 1-dependent random potential β \beta extending that defined by Sabot, Tarrès, and Zeng on finite graphs, and consider its associated random Schrödinger operator H β H_\beta . We construct a random function ψ \psi as a limit of martingales, such that ψ = 0 \psi =0 when the VRJP is recurrent, and ψ \psi is a positive generalized eigenfunction of the random Schrödinger operator with eigenvalue 0 0 , when the VRJP is transient. Then we prove a representation of the VRJP on infinite graphs as a mixture of Markov jump processes involving the function ψ \psi , the Green function of the random Schrödinger operator, and an independent Gamma random variable. On Z d {\Bbb Z}^d , we deduce from this representation a zero-one law for recurrence or transience of the VRJP and the ERRW, and a functional central limit theorem for the VRJP and the ERRW at weak reinforcement in dimension d 3 d\ge 3 , using estimates of Disertori, Sabot, and Tarrès and of Disertori, Spencer, and Zimbauer. Finally, we deduce recurrence of the ERRW in dimension d = 2 d=2 for any initial constant weights (using the estimates of Merkl and Rolles), thus giving a full answer to the question raised by Diaconis. We also raise some questions on the links between recurrence/transience of the VRJP and localization/delocalization of the random Schrödinger operator H β H_\beta .

Funder

Agence Nationale de la Recherche

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference24 articles.

1. Localization for linearly edge reinforced random walks;Angel, Omer;Duke Math. J.,2014

2. Continuous-time vertex reinforced jump processes on Galton-Watson trees;Basdevant, Anne-Laure;Ann. Appl. Probab.,2012

3. Limit theorems for vertex-reinforced jump processes on regular trees;Collevecchio, Andrea;Electron. J. Probab.,2009

4. D. Coppersmith and P. Diaconis, Random walk with reinforcement, unpublished manuscript, pages 187–220, 1987.

5. Vertex-reinforced jump processes on trees and finite graphs;Davis, Burgess;Probab. Theory Related Fields,2004

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A multi-dimensional version of Lamperti’s relation and the Matsumoto–Yor processes;Stochastic Processes and their Applications;2024-09

2. $$\mathbb {H}^{2|2}$$-model and Vertex-Reinforced Jump Process on Regular Trees: Infinite-Order Transition and an Intermediate Phase;Communications in Mathematical Physics;2024-07-30

3. Reinforced Galton–Watson processes I: Malthusian exponents;Random Structures & Algorithms;2024-04-22

4. Recurrence of horizontal–vertical walks;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2023-05-01

5. Monotonicity and phase transition for the VRJP and the ERRW;Journal of the European Mathematical Society;2022-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3