Categorifying Hecke algebras at prime roots of unity, part I

Author:

Elias Ben,Qi You

Abstract

We equip the type A A diagrammatic Hecke category with a special derivation, so that after specialization to characteristic p p it becomes a p p -dg category. We prove that the defining relations of the Hecke algebra are satisfied in the p p -dg Grothendieck group. We conjecture that the p p -dg Grothendieck group is isomorphic to the Iwahori-Hecke algebra, equipping it with a basis which may differ from both the Kazhdan-Lusztig basis and the p p -canonical basis. More precise conjectures will be found in the sequel.

Here are some other results contained in this paper. We provide an incomplete proof of the classification of all degree + 2 +2 derivations on the diagrammatic Hecke category, and a complete proof of the classification of those derivations for which the defining relations of the Hecke algebra are satisfied in the p p -dg Grothendieck group. In particular, our special derivation is unique up to duality and equivalence. We prove that no such derivation exists in simply-laced types outside of finite and affine type A A . We also examine a particular Bott-Samelson bimodule in type A 7 A_7 , which is indecomposable in characteristic 2 2 but decomposable in all other characteristics. We prove that this Bott-Samelson bimodule admits no nontrivial fantastic filtrations in any characteristic, which is the analogue in the p p -dg setting of being indecomposable.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference34 articles.

1. Steenrod structures on categorified quantum groups;Beliakova, Anna;Fund. Math.,2018

2. [EH] Ben Elias and Matthew Hogancamp, Homotopy lifting and conjugation by Rouquier complexes, In preparation.

3. Diagrammatics for Soergel categories;Elias, Ben;Int. J. Math. Math. Sci.,2010

4. Thicker Soergel calculus in type 𝐴;Elias, Ben;Proc. Lond. Math. Soc. (3),2016

5. The two-color Soergel calculus;Elias, Ben;Compos. Math.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3