Derived and abelian equivalence of K3 surfaces

Author:

Huybrechts Daniel

Abstract

The paper attempts to shed more light on a particular class of stability conditions on K 3 K3 surfaces constructed by Tom Bridgeland. The hearts of the underlying t-structures turn out to be significant invariants of the surface. We prove that two K 3 K3 surfaces X X and X X’ are derived equivalent if and only if there exist complexified polarizations B + i ω B+i\omega and B + i ω B’+i\omega ’ such that the associated abelian categories A ( exp ( B + i ω ) ) \mathcal {A}(\exp (B+i\omega )) and K ( exp ( B + i ω ) ) \mathcal {K}(\exp (B’+i\omega ’)) are equivalent. We study in detail the minimal objects of A ( exp ( B + i ω ) ) \mathcal {A}(\exp (B+i\omega )) and investigate stability under the Fourier–Mukai transform.

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Algebra and Number Theory

Reference27 articles.

1. A Fourier-Mukai transform for stable bundles on 𝐾3 surfaces;Bartocci, C.;J. Reine Angew. Math.,1997

2. Existence of 𝜇-stable vector bundles on 𝐾3 surfaces and the Fourier-Mukai transform;Bartocci, C.,1998

3. Generators and representability of functors in commutative and noncommutative geometry;Bondal, A.;Mosc. Math. J.,2003

4. T. Bridgeland, Stability conditions on triangulated categories. Ann. Math. to appear. math.AG/0212237.

5. T. Bridgeland, Stability conditions on K3 surfaces. Duke J. Math. to appear. math.AG/0307164.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Symplectic Birational Self-Maps of Projective Hyperkähler Manifolds of K3[n]-Type;International Mathematics Research Notices;2024-05-29

2. Co-t-structures, cotilting and cotorsion pairs;Mathematical Proceedings of the Cambridge Philosophical Society;2023-03-10

3. Equivariant categories of symplectic surfaces and fixed loci of Bridgeland moduli spaces;Algebraic Geometry;2022-07-01

4. Self-orthogonal τ-tilting modules and tilting modules;Journal of Pure and Applied Algebra;2022-03

5. Uhlenbeck Compactification as a Bridgeland Moduli Space;International Mathematics Research Notices;2022-02-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3