On the behavior of test ideals under finite morphisms

Author:

Schwede Karl,Tucker Kevin

Abstract

We derive precise transformation rules for test ideals under an arbitrary finite surjective morphism π : Y X \pi \colon Y \to X of normal varieties in prime characteristic p > 0 p > 0 . Specifically, given a ℚ

-divisor

Δ X \Delta _{X} on X X and any O X \mathcal {O}_{X} -linear map T : K ( Y ) K ( X ) \mathfrak {T} \colon K(Y) \to K(X) , we associate a ℚ

-divisor

Δ Y \Delta _{Y} on Y Y such that T ( π τ ( Y ; Δ Y ) ) = τ ( X ; Δ X ) \mathfrak {T} ( \pi _{*}\tau (Y;\Delta _{Y})) = \tau (X;\Delta _{X}) . When π \pi is separable and T = Tr Y / X \mathfrak {T} = \operatorname {Tr}_{Y/X} is the field trace, we have Δ Y = π Δ X Ram π \Delta _{Y} = \pi ^{*} \Delta _{X} - \operatorname {Ram}_{\pi } , where Ram π \operatorname {Ram}_{\pi } is the ramification divisor. If, in addition, Tr Y / X ( π O Y ) = O X \operatorname {Tr}_{Y/X}(\pi _{*}\mathcal {O}_{Y}) = \mathcal {O}_{X} , we conclude that π τ ( Y ; Δ Y ) K ( X ) = τ ( X ; Δ X ) \pi _{*}\tau (Y;\Delta _{Y}) \cap K(X) = \tau (X;\Delta _{X}) and thereby recover the analogous transformation rule to multiplier ideals in characteristic zero. Our main technique is a careful study of when an O X \mathcal {O}_{X} -linear map F O X O X F_{*} \mathcal {O}_{X} \to \mathcal {O}_{X} lifts to an O Y \mathcal {O}_{Y} -linear map F O Y O Y F_{*} \mathcal {O}_{Y} \to \mathcal {O}_{Y} , and the results obtained about these liftings are of independent interest as they relate to the theory of Frobenius splittings. In particular, again assuming Tr Y / X ( π O Y ) = O X \operatorname {Tr}_{Y/X}(\pi _{*}\mathcal {O}_{Y}) = \mathcal {O}_{X} , we obtain transformation results for F F -pure singularities under finite maps which mirror those for log canonical singularities in characteristic zero. Finally, we explore new conditions on the singularities of the ramification locus, which imply that, for a finite extension of normal domains R S R \subseteq S in characteristic p > 0 p > 0 , the trace map T : Frac S Frac R \mathfrak {T} : \operatorname {Frac} S \to \operatorname {Frac} R sends S S onto R R .

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Algebra and Number Theory

Reference56 articles.

1. Some results on test elements;Aberbach, Ian M.;Proc. Edinburgh Math. Soc. (2),1999

2. Wildly ramified 𝑍/2 actions in dimension two;Artin, M.;Proc. Amer. Math. Soc.,1975

3. Discreteness and rationality of 𝐹-thresholds;Blickle, Manuel;Michigan Math. J.,2008

4. Discreteness and rationality of 𝐹-jumping numbers on singular varieties;Blickle, Manuel;Math. Ann.,2010

5. [BST11] M. Blickle, K. Schwede, and K. Tucker: 𝐹-singularities via alterations, arXiv:1107.3807.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3