On planar Cayley graphs and Kleinian groups

Author:

Georgakopoulos Agelos

Abstract

Let G G be a finitely generated group acting faithfully and properly discontinuously by homeomorphisms on a planar surface X S 2 X \subseteq \mathbb {S}^2 . We prove that G G admits such an action that is in addition co-compact, provided we can replace X X by another surface Y S 2 Y \subseteq \mathbb {S}^2 .

We also prove that if a group H H has a finitely generated Cayley (multi-) graph C C equivariantly embeddable in S 2 \mathbb {S}^2 , then C C can be chosen so as to have no infinite path on the boundary of a face.

The proofs of these facts are intertwined, and the classes of groups they define coincide. In the orientation-preserving case they are exactly the (isomorphism types of) finitely generated Kleinian function groups. We construct a finitely generated planar Cayley graph whose group is not in this class.

In passing, we observe that the Freudenthal compactification of every planar surface is homeomorphic to the sphere.

Funder

H2020 European Research Council

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference49 articles.

1. On the Cayley graph of a generic finitely presented group;Arzhantseva, G. N.;Bull. Belg. Math. Soc. Simon Stevin,2004

2. Some applications of graph contractions;Babai, László;J. Graph Theory,1977

3. The growth rate of vertex-transitive planar graphs;Babai, László,1997

4. A 4-dimensional Kleinian group;Bowditch, B. H.;Trans. Amer. Math. Soc.,1994

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Canonical decompositions of 3-connected graphs;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

2. The planar Cayley graphs are effectively enumerable II;European Journal of Combinatorics;2023-05

3. 2‐complexes with unique embeddings in 3‐space;Bulletin of the London Mathematical Society;2022-08-27

4. Notes on Maskit’s Planarity Theorem;L’Enseignement Mathématique;2022-04-12

5. RESEARCHES OF SEMIGROUPS WITH PLANAR CAYLEY GRAPHS: RESULTS AND PROBLEMS;PRIKL DISKRETN MAT;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3