In the first part, using the recent measure classification results of Eskin–Lindenstrauss, we give a criterion to ensure a.s. equidistribution of empirical measures of an i.i.d. random walk on a homogeneous space
G
/
Γ
G/\Gamma
. Employing renewal and joint equidistribution arguments, this result is generalized in the second part to random walks with Markovian dependence. Finally, following a strategy of Simmons–Weiss, we apply these results to Diophantine approximation problems on fractals and show that almost every point with respect to Hausdorff measure on a graph directed self-similar set is of generic type, so, in particular, well approximable.