Time discretizations of Wasserstein–Hamiltonian flows

Author:

Cui Jianbo,Dieci Luca,Zhou Haomin

Abstract

We study discretizations of Hamiltonian systems on the probability density manifold equipped with the L 2 L^2 -Wasserstein metric. Based on discrete optimal transport theory, several Hamiltonian systems on a graph (lattice) with different weights are derived, which can be viewed as spatial discretizations of the original Hamiltonian systems. We prove consistency of these discretizations. Furthermore, by regularizing the system using the Fisher information, we deduce an explicit lower bound for the density function, which guarantees that symplectic schemes can be used to discretize in time. Moreover, we show desirable long time behavior of these symplectic schemes, and demonstrate their performance on several numerical examples. Finally, we compare the present approach with the standard viscosity methodology.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference47 articles.

1. Hamiltonian ODEs in the Wasserstein space of probability measures;Ambrosio, Luigi;Comm. Pure Appl. Math.,2008

2. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem;Benamou, Jean-David;Numer. Math.,2000

3. Iterative Bregman projections for regularized transportation problems;Benamou, Jean-David;SIAM J. Sci. Comput.,2015

4. SpringerBriefs in Mathematics;Bensoussan, Alain,2013

5. The master equation in mean field theory;Bensoussan, Alain;J. Math. Pures Appl. (9),2015

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Control for Stochastic Nonlinear Schrödinger Equation on Graph;SIAM Journal on Control and Optimization;2023-07-11

2. Stochastic Wasserstein Hamiltonian Flows;Journal of Dynamics and Differential Equations;2023-04-18

3. A Continuation Multiple Shooting Method for Wasserstein Geodesic Equation;SIAM Journal on Scientific Computing;2022-09-12

4. Symplectic Integration of Stochastic Hamiltonian Systems;Lecture Notes in Mathematics;2022

5. Stochastic Hamiltonian Systems;Lecture Notes in Mathematics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3