Critical value asymptotics for the contact process on random graphs

Author:

Nam Danny,Nguyen Oanh,Sly Allan

Abstract

Recent progress in the study of the contact process (see Shankar Bhamidi, Danny Nam, Oanh Nguyen, and Allan Sly [Ann. Probab. 49 (2021), pp. 244–286]) has verified that the extinction-survival threshold λ 1 \lambda _1 on a Galton-Watson tree is strictly positive if and only if the offspring distribution ξ \xi has an exponential tail. In this paper, we derive the first-order asymptotics of λ 1 \lambda _1 for the contact process on Galton-Watson trees and its corresponding analog for random graphs. In particular, if ξ \xi is appropriately concentrated around its mean, we demonstrate that λ 1 ( ξ ) 1 / E ξ \lambda _1(\xi ) \sim 1/\mathbb {E} \xi as E ξ \mathbb {E}\xi \rightarrow \infty , which matches with the known asymptotics on d d -regular trees. The same results for the short-long survival threshold on the Erdős-Rényi and other random graphs are shown as well.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference24 articles.

1. D. Aldous and J. A. Fill, Reversible Markov chains and random walks on graphs, Unfinished monograph, recompiled 2014, available at \url{http://www.stat.berkeley.edu/∼aldous/RWG/book.html}, 2002.

2. The critical contact process dies out;Bezuidenhout, Carol;Ann. Probab.,1990

3. Survival and extinction of epidemics on random graphs with general degree;Bhamidi, Shankar;Ann. Probab.,2021

4. Gibbs measures and phase transitions on sparse random graphs;Dembo, Amir;Braz. J. Probab. Stat.,2010

5. Cambridge Series in Statistical and Probabilistic Mathematics;Durrett, Rick,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the survival time of the SIRS process via expansion;Electronic Journal of Probability;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3