Degenerate principal series for even-orthogonal groups

Author:

Ban Dubravka,Jantzen Chris

Abstract

Let F F be a p p -adic field of characteristic 0 and G = O ( 2 n , F ) G=O(2n,F) (resp. S O ( 2 n , F ) SO(2n,F) ). A maximal parabolic subgroup of G G has the form P = M U P=MU , with Levi factor M G L ( k , F ) × O ( 2 ( n k ) , F ) M \cong GL(k,F) \times O(2(n-k),F) (resp. M G L ( k , F ) × S O ( 2 ( n k ) , F ) M \cong GL(k,F) \times SO(2(n-k),F) ). We consider a one-dimensional representation of M M of the form χ d e t k t r i v ( n k ) \chi \circ det_k \otimes triv_{(n-k)} , with χ \chi a one-dimensional representation of F × F^{\times } ; this may be extended trivially to get a representation of P P . We consider representations of the form Ind P G ( χ d e t k t r i v ( n k ) ) 1 \mbox {Ind}_P^G(\chi \circ det_k \otimes triv_{(n-k)}) \otimes 1 . (Our results also work when G = O ( 2 n , F ) G=O(2n,F) and the inducing representation is ( χ d e t k d e t ( n k ) ) 1 (\chi \circ det_k \otimes det_{(n-k)}) \otimes 1 , using d e t ( n k ) det_{(n-k)} to denote the nontrivial character of O ( 2 ( n k ) , F ) O(2(n-k),F) .) More generally, we allow Zelevinsky segment representations for the inducing representations. In this paper, we study the reducibility of such representations. We determine the reducibility points, give Langlands data and Jacquet modules for each of the irreducible composition factors, and describe how they are arranged into composition series. For O ( 2 n , F ) O(2n,F) , we use Jacquet module methods to obtain our results; the results for S O ( 2 n , F ) SO(2n,F) are obtained via an analysis of restrictions to S O ( 2 n , F ) SO(2n,F) .

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference39 articles.

1. Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif 𝑝-adique;Aubert, Anne-Marie;Trans. Amer. Math. Soc.,1995

2. Parabolic induction and Jacquet modules of representations of 𝑂(2𝑛,𝐹);Ban, Dubravka;Glas. Mat. Ser. III,1999

3. Self-duality in the case of 𝑆𝑂(2𝑛,𝐹);Ban, Dubravka;Glas. Mat. Ser. III,1999

4. Jacquet modules of parabolically induced representations and Weyl groups;Ban, Dubravka;Canad. J. Math.,2001

5. The Langlands classification for non-connected 𝑝-adic groups;Ban, Dubravka;Israel J. Math.,2001

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3