Distinguished tame supercuspidal representations and odd orthogonal periods

Author:

Hakim Jeffrey,Lansky Joshua

Abstract

We further develop and simplify the general theory of distinguished tame supercuspidal representations of reductive p p -adic groups due to Hakim and Murnaghan, as well as the analogous theory for finite reductive groups due to Lusztig. We apply our results to study the representations of G L n ( F ) \mathrm {GL}_n(F) , with n n odd and F F a nonarchimedean local field, that are distinguished with respect to an orthogonal group in n n variables. In particular, we determine precisely when a supercuspidal representation is distinguished with respect to an orthogonal group and, if so, that the space of distinguishing linear forms has dimension one.

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference26 articles.

1. Murnaghan-Kirillov theory for supercuspidal representations of tame general linear groups;Adler, Jeffrey D.;J. Reine Angew. Math.,2004

2. Parameterizing conjugacy classes of maximal unramified tori via Bruhat-Tits theory;DeBacker, Stephen;Michigan Math. J.,2006

3. Representations of reductive groups over finite fields;Deligne, P.;Ann. of Math. (2),1976

4. Metaplectic correspondence;Flicker, Yuval Z.;Inst. Hautes \'{E}tudes Sci. Publ. Math.,1986

5. [H] J. Hakim, “Tame supercuspidal representations of 𝐺𝐿_{𝑛} distinguished by orthogonal involutions”, preprint.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Supercuspidal representations of GL (F) distinguished by an orthogonal involution;Journal of Number Theory;2022-12

2. Distinguished cuspidal representations over p-adic and finite fields;Pacific Journal of Mathematics;2021-03-17

3. Distinguished regular supercuspidal representations;Mathematische Annalen;2020-02-25

4. Theta lifts and distinction for regular supercuspidal representations;Mathematische Zeitschrift;2019-09-03

5. Constructing tame supercuspidal representations;Representation Theory of the American Mathematical Society;2018-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3