Nevanlinna theoretical exceptional sets of rational towers and semigroups

Author:

Okuyama Yûsuke

Abstract

For a rational tower, i.e., a composition sequence of rational maps, in addition to the algebraic and dynamical exceptional sets, various Nevanlinna theoretical exceptional sets are defined, and as we showed previously in the case of iterations, all of them are the same. In this paper, we extend this result to the cases of a rational tower with summable distortions and a finitely generated rational semigroup. We show that all the exceptional sets of a finitely generated rational semigroup are countable, and all of them are empty if and only if the algebraic one is as well (this being the smallest among them). The countability of exceptional sets is fundamental in the Nevanlinna theory, and their emptiness is important in the complex dynamics.

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology

Reference28 articles.

1. Hyperbolicity of circular domains;Azukawa, Kazuo;Tohoku Math. J. (2),1983

2. Invariant sets under iteration of rational functions;Brolin, Hans;Ark. Mat.,1965

3. Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity;DeMarco, Laura;Math. Ann.,2003

4. Suites d’applications méromorphes multivaluées et courants laminaires;Dinh, Tien-Cuong;J. Geom. Anal.,2005

5. DS03 T.-C. Dinh and N. Sibony, Value distribution of meromorphic transforms and applications, math.DS/0306095.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3