The Capelli identity for Grassmann manifolds

Author:

Sahi Siddhartha

Abstract

The column space of a real n × k n\times k matrix x x of rank k k is a k k -plane. Thus we get a map from the space X X of such matrices to the Grassmannian G \mathbb {G} of k k -planes in R n \mathbb {R}^{n} , and hence a G L n GL_{n} -equivariant isomorphism \[ C ( G ) C ( X ) G L k . C^{\infty }\left ( \mathbb {G}\right ) \approx C^{\infty }\left ( X\right ) ^{GL_{k}}\text {.} \] We consider the O n × G L k O_{n}\times GL_{k} -invariant differential operator C C on X X given by \[ C = det ( x t x ) det ( t ) , where  x = ( x i j ) ,   = ( x i j ) . C=\det \left ( x^{t}x\right ) \det \left ( \partial ^{t}\partial \right ),\quad \text {where }x=\left ( x_{ij}\right ),\text { }\partial =\left ( \frac {\partial }{\partial x_{ij}}\right ). \] By the above isomorphism, C C defines an O n O_{n} -invariant operator on G \mathbb {G} .

Since G \mathbb {G} is a symmetric space for O n O_{n} , the irreducible O n O_{n} -submodules of C ( G ) C^{\infty }\left ( \mathbb {G}\right ) have multiplicity 1; thus, O n O_{n} -invariant operators act by scalars on these submodules. Our main result determines these scalars for a general class of such operators including C C . This answers a question raised by Howe and Lee and also gives new Capelli-type identities for the orthogonal Lie algebra.

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference20 articles.

1. On the heat equation and the index theorem;Atiyah, M.;Invent. Math.,1973

2. History of Mathematics;Borel, Armand,2001

3. Ueber die Zurückführung der Cayley’schen Operation Ω auf gewöhnliche Polar-Operationen;Capelli, Alfredo;Math. Ann.,1887

4. Noncommutative determinants, Cauchy-Binet formulae, and Capelli-type identities. I. Generalizations of the Capelli and Turnbull identities;Caracciolo, Sergio;Electron. J. Combin.,2009

5. London Mathematical Society Student Texts;Fulton, William,1997

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum immanants, double Young–Capelli bitableaux and Schur shifted symmetric functions;Journal of Algebra and Its Applications;2022-07-28

2. Interpolation Polynomials, Bar Monomials, and Their Positivity;International Mathematics Research Notices;2022-03-24

3. Quadratic Capelli operators and Okounkov polynomials;Annales scientifiques de l'École normale supérieure;2019

4. The Capelli Identity and Radon Transform for Grassmannians;International Mathematics Research Notices;2016-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3