Positivity conjectures for Kazhdan-Lusztig theory on twisted involutions: the universal case

Author:

Marberg Eric

Abstract

Let ( W , S ) (W,S) be a Coxeter system and let w w w \mapsto w^* be an involution of W W which preserves the set of simple generators S S . Lusztig and Vogan have recently shown that the set of twisted involutions (i.e., elements w W w \in W with w 1 = w w^{-1} = w^* ) naturally generates a module of the Hecke algebra of ( W , S ) (W,S) with two distinguished bases. The transition matrix between these bases defines a family of polynomials P y , w σ P^\sigma _{y,w} which one can view as “twisted” analogues of the much-studied Kazhdan-Lusztig polynomials of ( W , S ) (W,S) . The polynomials P y , w σ P^\sigma _{y,w} can have negative coefficients, but display several conjectural positivity properties of interest. This paper reviews Lusztig’s construction and then proves three such positivity properties for Coxeter systems which are universal (i.e., having no braids relations), generalizing previous work of Dyer. Our methods are entirely combinatorial and elementary, in contrast to the geometric arguments employed by Lusztig and Vogan to prove similar positivity conjectures for crystallographic Coxeter systems.

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Affine transitions for involution Stanley symmetric functions;European Journal of Combinatorics;2022-03

2. A symplectic refinement of shifted Hecke insertion;Journal of Combinatorial Theory, Series A;2020-07

3. Integral u-deformed involution modules;Journal of Algebra;2019-08

4. A word property for twisted involutions in Coxeter groups;Journal of Combinatorial Theory, Series A;2019-01

5. Involution words: Counting problems and connections to Schubert calculus for symmetric orbit closures;Journal of Combinatorial Theory, Series A;2018-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3