Howe quotients of unitary characters and unitary lowest weight modules

Author:

Loke Hung Yean

Abstract

In this paper, let ( G , G ) (G,G’) be the dual pair ( S p ~ ( p , R ) , O ~ ( n , m ) ) (\widetilde {\mathrm {Sp}}(p,\mathbb {R}), \tilde {\mathrm O}(n,m)) . We will determine the composition series of the Howe quotients of G G’ which are lifts from one-dimensional unitary representations of G G and unitary lowest weight modules of G G . We will also determine the unitarizability of the subquotients. Our method also works for the dual pairs ( U ~ ( p , q ) , U ~ ( n , m ) ) (\widetilde {\mathrm U}(p,q), \widetilde {\mathrm U}(n,m)) and ( O ~ ( 2 p ) , S p ~ ( n , m ) ) (\tilde {\mathrm O}^*(2p), \widetilde {\mathrm {Sp}}(n,m)) .

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference50 articles.

1. [Ad]Ad J. Adams, The Theta correspondences over ℝ: Workshop at the University of Maryland. (1994).

2. Diagrams for modules;Alperin, J. L.;J. Pure Appl. Algebra,1980

3. Differential operators and highest weight representations;Davidson, Mark G.;Mem. Amer. Math. Soc.,1991

4. A classification of unitary highest weight modules;Enright, Thomas,1983

5. [GZ]GZ I. M. Gelfand and M. L. Tsetlin, Finite dimensional representations of the group of unimodular matrices, in “Gelfand, Izrail M. Collected Papers,” Vol. II, 653-656, Springer-Verlag, Berlin, New York, 1988.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hodge classes and the Jacquet–Langlands correspondence;Forum of Mathematics, Pi;2023

2. On the Conservation Conjectures of Kudla and Rallis;Representation Theory, Number Theory, and Invariant Theory;2017

3. Derived functor modules, dual pairs and U(g)K-actions;Journal of Algebra;2016-03

4. Invariants and -spectrums of local theta lifts;Compositio Mathematica;2014-09-17

5. Conservation relations for local theta correspondence;Journal of the American Mathematical Society;2014-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3